Cargando…

Two Independent Capsules Surrounding a Single Textured Implant in Ehlers-Danlos Syndrome

Textured breast implants are associated with prolonged inflammation leading to increased risk for complications such as the development of anaplastic large cell lymphoma. The underlying molecular mechanisms that drive increased inflammation toward textured implants (compared with smooth implants) re...

Descripción completa

Detalles Bibliográficos
Autores principales: Padmanabhan, Jagannath, Liu, Farrah C., Sivaraj, Dharshan, Henn, Dominic, Chen, Kellen, Simon, Devorah R., Barrera, Janos A., Gurtner, Geoffrey C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410635/
https://www.ncbi.nlm.nih.gov/pubmed/36032379
http://dx.doi.org/10.1097/GOX.0000000000004470
Descripción
Sumario:Textured breast implants are associated with prolonged inflammation leading to increased risk for complications such as the development of anaplastic large cell lymphoma. The underlying molecular mechanisms that drive increased inflammation toward textured implants (compared with smooth implants) remain poorly understood. Here, we present the first known case of a patient with Ehlers-Danlos syndrome (EDS) who developed two independent fibrotic capsules around a single textured silicone implant. The patient was found to have one internal capsule tightly adherent to the implant and a second external capsule that was attached to the surrounding tissue. We observed that the internal implant-adherent capsule was composed of a highly aligned and dense collagen network, completely atypical for EDS and indicative of a high mechanical stress environment. In contrast, the external nonadherent capsule, which primarily interacted with the smooth surface of the internal capsule, displayed disorganized collagen fibers with no discernible alignment, classic for EDS. Remarkably, we found that the internal capsule displayed high activation of monocyte chemoattractant protein-1, a mechanoresponsive inflammatory mediator that was not elevated in the disorganized external capsule. Taken together, these findings demonstrate that the tight adhesion between the textured implant surface and the internal capsule creates a high mechanical stress environment, which is responsible for the increased local inflammation observed in the internal capsule. This unique case demonstrates that mechanical stress is able to override genetic defects locally in collagen organization and directly connects the textured surface of implants to prolonged inflammation.