Cargando…

New Subregions of the Mouse Entopeduncular Nucleus Defined by the Complementary Immunoreactivities for Substance P and Cannabinoid Type-1 Receptor Combined with Distributions of Different Neuronal Types

The entopeduncular nucleus (EPN) and substantia nigra pars reticulata (SNr) constitute the output nuclei of the basal ganglia, but studies on the EPN are limited compared with those on the SNr. Both nuclei receive projections from the striatum with axons containing substance P (SP) and cannabinoid t...

Descripción completa

Detalles Bibliográficos
Autores principales: Miyamoto, Yuta, Fukuda, Takaichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410772/
https://www.ncbi.nlm.nih.gov/pubmed/35927027
http://dx.doi.org/10.1523/ENEURO.0208-22.2022
_version_ 1784775168259784704
author Miyamoto, Yuta
Fukuda, Takaichi
author_facet Miyamoto, Yuta
Fukuda, Takaichi
author_sort Miyamoto, Yuta
collection PubMed
description The entopeduncular nucleus (EPN) and substantia nigra pars reticulata (SNr) constitute the output nuclei of the basal ganglia, but studies on the EPN are limited compared with those on the SNr. Both nuclei receive projections from the striatum with axons containing substance P (SP) and cannabinoid type-1 receptor (CB1R), and immunoreactivities for these substances show complementary patterns in the striatum and SNr. In this study, we revealed a similar complementarity in the mouse EPN, combined it with region-specific neuronal distributions, and defined subregions of the EPN. First, the EPN was divided into two areas, one showing low SP and high CB1R (lSP/hCB1R) immunoreactivities, and the other showing high SP and low CB1R (hSP/lCB1R). The former received inputs from the dorsolateral striatum that are innervated by sensorimotor cortices, whereas the latter received inputs from the medial striatum that are innervated by limbic/association cortices. Then, the lSP/hCB1R area was further divided into the dorsolateral subregion in the rostral EPN and the core subregion in the caudal EPN, the latter characterized by the concentration of parvalbumin-positive neurons targeting the ventral anterior–ventral lateral thalamic nucleus. The hSP/lCB1R area was divided into the ventromedial subregion in the rostral EPN and the shell subregion in the caudal EPN, the former characterized by the concentration of nitric oxide synthase-positive neurons targeting the lateral habenula (LHb). Somatostatin-positive neurons targeting the LHb were located diffusely in three subregions other than the core. These findings illuminate structural organization inside the basal ganglia, suggesting mechanisms for sorting diverse information through parallel loops with differing synaptic modulation by CB1R.
format Online
Article
Text
id pubmed-9410772
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Society for Neuroscience
record_format MEDLINE/PubMed
spelling pubmed-94107722022-08-26 New Subregions of the Mouse Entopeduncular Nucleus Defined by the Complementary Immunoreactivities for Substance P and Cannabinoid Type-1 Receptor Combined with Distributions of Different Neuronal Types Miyamoto, Yuta Fukuda, Takaichi eNeuro Research Article: New Research The entopeduncular nucleus (EPN) and substantia nigra pars reticulata (SNr) constitute the output nuclei of the basal ganglia, but studies on the EPN are limited compared with those on the SNr. Both nuclei receive projections from the striatum with axons containing substance P (SP) and cannabinoid type-1 receptor (CB1R), and immunoreactivities for these substances show complementary patterns in the striatum and SNr. In this study, we revealed a similar complementarity in the mouse EPN, combined it with region-specific neuronal distributions, and defined subregions of the EPN. First, the EPN was divided into two areas, one showing low SP and high CB1R (lSP/hCB1R) immunoreactivities, and the other showing high SP and low CB1R (hSP/lCB1R). The former received inputs from the dorsolateral striatum that are innervated by sensorimotor cortices, whereas the latter received inputs from the medial striatum that are innervated by limbic/association cortices. Then, the lSP/hCB1R area was further divided into the dorsolateral subregion in the rostral EPN and the core subregion in the caudal EPN, the latter characterized by the concentration of parvalbumin-positive neurons targeting the ventral anterior–ventral lateral thalamic nucleus. The hSP/lCB1R area was divided into the ventromedial subregion in the rostral EPN and the shell subregion in the caudal EPN, the former characterized by the concentration of nitric oxide synthase-positive neurons targeting the lateral habenula (LHb). Somatostatin-positive neurons targeting the LHb were located diffusely in three subregions other than the core. These findings illuminate structural organization inside the basal ganglia, suggesting mechanisms for sorting diverse information through parallel loops with differing synaptic modulation by CB1R. Society for Neuroscience 2022-08-18 /pmc/articles/PMC9410772/ /pubmed/35927027 http://dx.doi.org/10.1523/ENEURO.0208-22.2022 Text en Copyright © 2022 Miyamoto and Fukuda https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Research Article: New Research
Miyamoto, Yuta
Fukuda, Takaichi
New Subregions of the Mouse Entopeduncular Nucleus Defined by the Complementary Immunoreactivities for Substance P and Cannabinoid Type-1 Receptor Combined with Distributions of Different Neuronal Types
title New Subregions of the Mouse Entopeduncular Nucleus Defined by the Complementary Immunoreactivities for Substance P and Cannabinoid Type-1 Receptor Combined with Distributions of Different Neuronal Types
title_full New Subregions of the Mouse Entopeduncular Nucleus Defined by the Complementary Immunoreactivities for Substance P and Cannabinoid Type-1 Receptor Combined with Distributions of Different Neuronal Types
title_fullStr New Subregions of the Mouse Entopeduncular Nucleus Defined by the Complementary Immunoreactivities for Substance P and Cannabinoid Type-1 Receptor Combined with Distributions of Different Neuronal Types
title_full_unstemmed New Subregions of the Mouse Entopeduncular Nucleus Defined by the Complementary Immunoreactivities for Substance P and Cannabinoid Type-1 Receptor Combined with Distributions of Different Neuronal Types
title_short New Subregions of the Mouse Entopeduncular Nucleus Defined by the Complementary Immunoreactivities for Substance P and Cannabinoid Type-1 Receptor Combined with Distributions of Different Neuronal Types
title_sort new subregions of the mouse entopeduncular nucleus defined by the complementary immunoreactivities for substance p and cannabinoid type-1 receptor combined with distributions of different neuronal types
topic Research Article: New Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410772/
https://www.ncbi.nlm.nih.gov/pubmed/35927027
http://dx.doi.org/10.1523/ENEURO.0208-22.2022
work_keys_str_mv AT miyamotoyuta newsubregionsofthemouseentopeduncularnucleusdefinedbythecomplementaryimmunoreactivitiesforsubstancepandcannabinoidtype1receptorcombinedwithdistributionsofdifferentneuronaltypes
AT fukudatakaichi newsubregionsofthemouseentopeduncularnucleusdefinedbythecomplementaryimmunoreactivitiesforsubstancepandcannabinoidtype1receptorcombinedwithdistributionsofdifferentneuronaltypes