Cargando…
Deep Learning-Based Computed Tomography Features in Evaluating Early Screening and Risk Factors for Chronic Obstructive Pulmonary Disease
This research aimed to investigate the diagnostic effect of computed tomography (CT) images based on a deep learning double residual convolution neural network (DRCNN) model on chronic obstructive pulmonary disease (COPD) and the related risk factors for COPD. The questionnaire survey was conducted...
Autores principales: | Zhang, Changhong, Liu, Jianhua, Cao, Liang, Feng, Gaixia, Zhang, Zhihua, Ji, Mengmeng, Zhang, Yaping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410847/ https://www.ncbi.nlm.nih.gov/pubmed/36051929 http://dx.doi.org/10.1155/2022/5951418 |
Ejemplares similares
-
A Comparative Evaluation of Computed Tomography Images for the Classification of Spirometric Severity of the Chronic Obstructive Pulmonary Disease with Deep Learning
por: Sugimori, Hiroyuki, et al.
Publicado: (2021) -
Automatic segmentation of pulmonary lobes on low-dose computed tomography using deep learning
por: Zhang, Zewei, et al.
Publicado: (2021) -
Deep learning for the screening of primary ciliary dyskinesia based on cranial computed tomography
por: Duan, Bo, et al.
Publicado: (2023) -
Role of Deep Learning in Computed Tomography
por: Garg, Yash, et al.
Publicado: (2023) -
Appraisal of Deep-Learning Techniques on Computer-Aided Lung Cancer Diagnosis with Computed Tomography Screening
por: Agnes, S. Akila, et al.
Publicado: (2020)