Cargando…
On the Design of Secured and Reliable Dynamic Access Control Scheme of Patient E-Healthcare Records in Cloud Environment
Traditional healthcare services have changed into modern ones in which doctors can diagnose patients from a distance. All stakeholders, including patients, ward boy, life insurance agents, physicians, and others, have easy access to patients' medical records due to cloud computing. The cloud...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410930/ https://www.ncbi.nlm.nih.gov/pubmed/36035822 http://dx.doi.org/10.1155/2022/3804553 |
Sumario: | Traditional healthcare services have changed into modern ones in which doctors can diagnose patients from a distance. All stakeholders, including patients, ward boy, life insurance agents, physicians, and others, have easy access to patients' medical records due to cloud computing. The cloud's services are very cost-effective and scalable, and provide various mobile access options for a patient's electronic health records (EHRs). EHR privacy and security are critical concerns despite the many benefits of the cloud. Patient health information is extremely sensitive and important, and sending it over an unencrypted wireless media raises a number of security hazards. This study suggests an innovative and secure access system for cloud-based electronic healthcare services storing patient health records in a third-party cloud service provider. The research considers the remote healthcare requirements for maintaining patient information integrity, confidentiality, and security. There will be fewer attacks on e-healthcare records now that stakeholders will have a safe interface and data on the cloud will not be accessible to them. End-to-end encryption is ensured by using multiple keys generated by the key conclusion function (KCF), and access to cloud services is granted based on a person's identity and the relationship between the parties involved, which protects their personal information that is the methodology used in the proposed scheme. The proposed scheme is best suited for cloud-based e-healthcare services because of its simplicity and robustness. Using different Amazon EC2 hosting options, we examine how well our cloud-based web application service works when the number of requests linearly increases. The performance of our web application service that runs in the cloud is based on how many requests it can handle per second while keeping its response time constant. The proposed secure access scheme for cloud-based web applications was compared to the Ethereum blockchain platform, which uses internet of things (IoT) devices in terms of execution time, throughput, and latency. |
---|