Cargando…
Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks
The electrocardiogram, also known as an electrocardiogram (ECG), is considered to be one of the most significant sources of data regarding the structure and function of the heart. In order to obtain an electrocardiogram, the contractions and relaxations of the heart are first captured in the proper...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410968/ https://www.ncbi.nlm.nih.gov/pubmed/36035826 http://dx.doi.org/10.1155/2022/1094830 |
_version_ | 1784775215884009472 |
---|---|
author | Badr, Malek Al-Otaibi, Shaha Alturki, Nazik Abir, Tanvir |
author_facet | Badr, Malek Al-Otaibi, Shaha Alturki, Nazik Abir, Tanvir |
author_sort | Badr, Malek |
collection | PubMed |
description | The electrocardiogram, also known as an electrocardiogram (ECG), is considered to be one of the most significant sources of data regarding the structure and function of the heart. In order to obtain an electrocardiogram, the contractions and relaxations of the heart are first captured in the proper recording medium. Due to the fact that irregularities in the functioning of the heart are reflected in the ECG indications, it is possible to use these indications to diagnose cardiac issues. Arrhythmia is the medical term for the abnormalities that might occur in the regular functioning of the heart (rhythm disorder). Environmental and genetic variables can both play a role in the development of arrhythmias. Arrhythmias are reflected on the ECG sign, which depicts the same region regardless of where in the heart they occur; thus, they may be seen in ECG signals. This is how arrhythmias can be detected. Due to the time limits of this study, the ECG signals of individuals who were healthy, as well as those who suffered from arrhythmias were divided into 10-minute segments. The arithmetic mean approach is one of the fundamental statistical factors. It is used to construct the feature vectors of each received wave and interval, and these vectors offer information regarding arrhythmias in accordance with the agreed-upon temporal restrictions. In order to identify the heart arrhythmias, the obtained feature vectors are fed into a classifier that is based on a multilayer perceptron neural network. In conclusion, ROC analysis and contrast matrix are utilised in order to evaluate the overall correct classification result produced by the ECG-based classifier. Because of this, it has been demonstrated that the method that was recommended has high classification accuracy when attempting to diagnose arrhythmia based on ECG indications. This research makes use of a variety of diagnostic terminologies, including ECG signal, multilayer perceptron neural network, signal processing, disease diagnosis, and arrhythmia diagnosis. |
format | Online Article Text |
id | pubmed-9410968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-94109682022-08-26 Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks Badr, Malek Al-Otaibi, Shaha Alturki, Nazik Abir, Tanvir Comput Intell Neurosci Research Article The electrocardiogram, also known as an electrocardiogram (ECG), is considered to be one of the most significant sources of data regarding the structure and function of the heart. In order to obtain an electrocardiogram, the contractions and relaxations of the heart are first captured in the proper recording medium. Due to the fact that irregularities in the functioning of the heart are reflected in the ECG indications, it is possible to use these indications to diagnose cardiac issues. Arrhythmia is the medical term for the abnormalities that might occur in the regular functioning of the heart (rhythm disorder). Environmental and genetic variables can both play a role in the development of arrhythmias. Arrhythmias are reflected on the ECG sign, which depicts the same region regardless of where in the heart they occur; thus, they may be seen in ECG signals. This is how arrhythmias can be detected. Due to the time limits of this study, the ECG signals of individuals who were healthy, as well as those who suffered from arrhythmias were divided into 10-minute segments. The arithmetic mean approach is one of the fundamental statistical factors. It is used to construct the feature vectors of each received wave and interval, and these vectors offer information regarding arrhythmias in accordance with the agreed-upon temporal restrictions. In order to identify the heart arrhythmias, the obtained feature vectors are fed into a classifier that is based on a multilayer perceptron neural network. In conclusion, ROC analysis and contrast matrix are utilised in order to evaluate the overall correct classification result produced by the ECG-based classifier. Because of this, it has been demonstrated that the method that was recommended has high classification accuracy when attempting to diagnose arrhythmia based on ECG indications. This research makes use of a variety of diagnostic terminologies, including ECG signal, multilayer perceptron neural network, signal processing, disease diagnosis, and arrhythmia diagnosis. Hindawi 2022-08-05 /pmc/articles/PMC9410968/ /pubmed/36035826 http://dx.doi.org/10.1155/2022/1094830 Text en Copyright © 2022 Malek Badr et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Badr, Malek Al-Otaibi, Shaha Alturki, Nazik Abir, Tanvir Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks |
title | Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks |
title_full | Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks |
title_fullStr | Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks |
title_full_unstemmed | Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks |
title_short | Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks |
title_sort | detection of heart arrhythmia on electrocardiogram using artificial neural networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410968/ https://www.ncbi.nlm.nih.gov/pubmed/36035826 http://dx.doi.org/10.1155/2022/1094830 |
work_keys_str_mv | AT badrmalek detectionofheartarrhythmiaonelectrocardiogramusingartificialneuralnetworks AT alotaibishaha detectionofheartarrhythmiaonelectrocardiogramusingartificialneuralnetworks AT alturkinazik detectionofheartarrhythmiaonelectrocardiogramusingartificialneuralnetworks AT abirtanvir detectionofheartarrhythmiaonelectrocardiogramusingartificialneuralnetworks |