Cargando…
EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick
While fundamental aspects of the application of artificial intelligence (AI) to electrocardiogram (ECG) analysis were discussed in part 1 of this review, the present work (part 2) provides a review of recent studies on the practical application of this new technology. The number of published article...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Medizin
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411078/ https://www.ncbi.nlm.nih.gov/pubmed/35552487 http://dx.doi.org/10.1007/s00399-022-00855-x |
_version_ | 1784775239722336256 |
---|---|
author | Haverkamp, Wilhelm Strodthoff, Nils Israel, Carsten |
author_facet | Haverkamp, Wilhelm Strodthoff, Nils Israel, Carsten |
author_sort | Haverkamp, Wilhelm |
collection | PubMed |
description | While fundamental aspects of the application of artificial intelligence (AI) to electrocardiogram (ECG) analysis were discussed in part 1 of this review, the present work (part 2) provides a review of recent studies on the practical application of this new technology. The number of published articles on the topic of AI-based ECG analysis has been increasing rapidly since 2017. This is especially true for studies that use deep learning (DL) with artificial neural networks. The aim is not only to overcome the weaknesses of classical ECG diagnostics, but also to extend the functionality of the ECG. This involves the detection of cardiological and noncardiological diseases and the prediction for clinical events, e.g., the future development of left ventricular dysfunction and future clinical manifestation of atrial fibrillation. This is made possible by AI using DL to find subclinical patterns in giant ECG datasets and using them for algorithm development. AI-assisted ECG analysis is becoming a screening tool; it goes far beyond just being “better” than a cardiologist. The progress that has been made is remarkable and is generating much attention and also euphoria among experts and the public. However, most studies are proof-of-concept studies. Often, private (institution-owned) data are used, the quality of which is unclear. To date, clinical validation of the developed algorithms in other collectives and scenarios has been rare. Particularly problematic is that the way AI finds a solution so far mostly remains hidden from humans (black-box character of AI). Overall, AI-based electrocardiography is still in its infancy. However, it is already foreseeable that the ECG, as a diagnostic procedure that is easy to use and can be repeated as often as desired, will not only continue to be indispensable in the future, but will also gain in clinical importance. |
format | Online Article Text |
id | pubmed-9411078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Medizin |
record_format | MEDLINE/PubMed |
spelling | pubmed-94110782022-08-27 EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick Haverkamp, Wilhelm Strodthoff, Nils Israel, Carsten Herzschrittmacherther Elektrophysiol Reviews While fundamental aspects of the application of artificial intelligence (AI) to electrocardiogram (ECG) analysis were discussed in part 1 of this review, the present work (part 2) provides a review of recent studies on the practical application of this new technology. The number of published articles on the topic of AI-based ECG analysis has been increasing rapidly since 2017. This is especially true for studies that use deep learning (DL) with artificial neural networks. The aim is not only to overcome the weaknesses of classical ECG diagnostics, but also to extend the functionality of the ECG. This involves the detection of cardiological and noncardiological diseases and the prediction for clinical events, e.g., the future development of left ventricular dysfunction and future clinical manifestation of atrial fibrillation. This is made possible by AI using DL to find subclinical patterns in giant ECG datasets and using them for algorithm development. AI-assisted ECG analysis is becoming a screening tool; it goes far beyond just being “better” than a cardiologist. The progress that has been made is remarkable and is generating much attention and also euphoria among experts and the public. However, most studies are proof-of-concept studies. Often, private (institution-owned) data are used, the quality of which is unclear. To date, clinical validation of the developed algorithms in other collectives and scenarios has been rare. Particularly problematic is that the way AI finds a solution so far mostly remains hidden from humans (black-box character of AI). Overall, AI-based electrocardiography is still in its infancy. However, it is already foreseeable that the ECG, as a diagnostic procedure that is easy to use and can be repeated as often as desired, will not only continue to be indispensable in the future, but will also gain in clinical importance. Springer Medizin 2022-05-12 2022 /pmc/articles/PMC9411078/ /pubmed/35552487 http://dx.doi.org/10.1007/s00399-022-00855-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Reviews Haverkamp, Wilhelm Strodthoff, Nils Israel, Carsten EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick |
title | EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick |
title_full | EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick |
title_fullStr | EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick |
title_full_unstemmed | EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick |
title_short | EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick |
title_sort | ekg-diagnostik mit hilfe künstlicher intelligenz: aktueller stand und zukünftige perspektiven – teil 2: aktuelle studienlage und ausblick |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411078/ https://www.ncbi.nlm.nih.gov/pubmed/35552487 http://dx.doi.org/10.1007/s00399-022-00855-x |
work_keys_str_mv | AT haverkampwilhelm ekgdiagnostikmithilfekunstlicherintelligenzaktuellerstandundzukunftigeperspektiventeil2aktuellestudienlageundausblick AT strodthoffnils ekgdiagnostikmithilfekunstlicherintelligenzaktuellerstandundzukunftigeperspektiventeil2aktuellestudienlageundausblick AT israelcarsten ekgdiagnostikmithilfekunstlicherintelligenzaktuellerstandundzukunftigeperspektiventeil2aktuellestudienlageundausblick |