Cargando…

EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick

While fundamental aspects of the application of artificial intelligence (AI) to electrocardiogram (ECG) analysis were discussed in part 1 of this review, the present work (part 2) provides a review of recent studies on the practical application of this new technology. The number of published article...

Descripción completa

Detalles Bibliográficos
Autores principales: Haverkamp, Wilhelm, Strodthoff, Nils, Israel, Carsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Medizin 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411078/
https://www.ncbi.nlm.nih.gov/pubmed/35552487
http://dx.doi.org/10.1007/s00399-022-00855-x
_version_ 1784775239722336256
author Haverkamp, Wilhelm
Strodthoff, Nils
Israel, Carsten
author_facet Haverkamp, Wilhelm
Strodthoff, Nils
Israel, Carsten
author_sort Haverkamp, Wilhelm
collection PubMed
description While fundamental aspects of the application of artificial intelligence (AI) to electrocardiogram (ECG) analysis were discussed in part 1 of this review, the present work (part 2) provides a review of recent studies on the practical application of this new technology. The number of published articles on the topic of AI-based ECG analysis has been increasing rapidly since 2017. This is especially true for studies that use deep learning (DL) with artificial neural networks. The aim is not only to overcome the weaknesses of classical ECG diagnostics, but also to extend the functionality of the ECG. This involves the detection of cardiological and noncardiological diseases and the prediction for clinical events, e.g., the future development of left ventricular dysfunction and future clinical manifestation of atrial fibrillation. This is made possible by AI using DL to find subclinical patterns in giant ECG datasets and using them for algorithm development. AI-assisted ECG analysis is becoming a screening tool; it goes far beyond just being “better” than a cardiologist. The progress that has been made is remarkable and is generating much attention and also euphoria among experts and the public. However, most studies are proof-of-concept studies. Often, private (institution-owned) data are used, the quality of which is unclear. To date, clinical validation of the developed algorithms in other collectives and scenarios has been rare. Particularly problematic is that the way AI finds a solution so far mostly remains hidden from humans (black-box character of AI). Overall, AI-based electrocardiography is still in its infancy. However, it is already foreseeable that the ECG, as a diagnostic procedure that is easy to use and can be repeated as often as desired, will not only continue to be indispensable in the future, but will also gain in clinical importance.
format Online
Article
Text
id pubmed-9411078
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Medizin
record_format MEDLINE/PubMed
spelling pubmed-94110782022-08-27 EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick Haverkamp, Wilhelm Strodthoff, Nils Israel, Carsten Herzschrittmacherther Elektrophysiol Reviews While fundamental aspects of the application of artificial intelligence (AI) to electrocardiogram (ECG) analysis were discussed in part 1 of this review, the present work (part 2) provides a review of recent studies on the practical application of this new technology. The number of published articles on the topic of AI-based ECG analysis has been increasing rapidly since 2017. This is especially true for studies that use deep learning (DL) with artificial neural networks. The aim is not only to overcome the weaknesses of classical ECG diagnostics, but also to extend the functionality of the ECG. This involves the detection of cardiological and noncardiological diseases and the prediction for clinical events, e.g., the future development of left ventricular dysfunction and future clinical manifestation of atrial fibrillation. This is made possible by AI using DL to find subclinical patterns in giant ECG datasets and using them for algorithm development. AI-assisted ECG analysis is becoming a screening tool; it goes far beyond just being “better” than a cardiologist. The progress that has been made is remarkable and is generating much attention and also euphoria among experts and the public. However, most studies are proof-of-concept studies. Often, private (institution-owned) data are used, the quality of which is unclear. To date, clinical validation of the developed algorithms in other collectives and scenarios has been rare. Particularly problematic is that the way AI finds a solution so far mostly remains hidden from humans (black-box character of AI). Overall, AI-based electrocardiography is still in its infancy. However, it is already foreseeable that the ECG, as a diagnostic procedure that is easy to use and can be repeated as often as desired, will not only continue to be indispensable in the future, but will also gain in clinical importance. Springer Medizin 2022-05-12 2022 /pmc/articles/PMC9411078/ /pubmed/35552487 http://dx.doi.org/10.1007/s00399-022-00855-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Reviews
Haverkamp, Wilhelm
Strodthoff, Nils
Israel, Carsten
EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick
title EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick
title_full EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick
title_fullStr EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick
title_full_unstemmed EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick
title_short EKG-Diagnostik mit Hilfe künstlicher Intelligenz: aktueller Stand und zukünftige Perspektiven – Teil 2: Aktuelle Studienlage und Ausblick
title_sort ekg-diagnostik mit hilfe künstlicher intelligenz: aktueller stand und zukünftige perspektiven – teil 2: aktuelle studienlage und ausblick
topic Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411078/
https://www.ncbi.nlm.nih.gov/pubmed/35552487
http://dx.doi.org/10.1007/s00399-022-00855-x
work_keys_str_mv AT haverkampwilhelm ekgdiagnostikmithilfekunstlicherintelligenzaktuellerstandundzukunftigeperspektiventeil2aktuellestudienlageundausblick
AT strodthoffnils ekgdiagnostikmithilfekunstlicherintelligenzaktuellerstandundzukunftigeperspektiventeil2aktuellestudienlageundausblick
AT israelcarsten ekgdiagnostikmithilfekunstlicherintelligenzaktuellerstandundzukunftigeperspektiventeil2aktuellestudienlageundausblick