Cargando…
Survival prediction in triple negative breast cancer using multiple instance learning of histopathological images
Computational pathology is a rapidly expanding area for research due to the current global transformation of histopathology through the adoption of digital workflows. Survival prediction of breast cancer patients is an important task that currently depends on histopathology assessment of cancer morp...
Autores principales: | Sandarenu, Piumi, Millar, Ewan K. A., Song, Yang, Browne, Lois, Beretov, Julia, Lynch, Jodi, Graham, Peter H., Jonnagaddala, Jitendra, Hawkins, Nicholas, Huang, Junzhou, Meijering, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411153/ https://www.ncbi.nlm.nih.gov/pubmed/36008541 http://dx.doi.org/10.1038/s41598-022-18647-1 |
Ejemplares similares
-
Tumour Stroma Ratio Assessment Using Digital Image Analysis Predicts Survival in Triple Negative and Luminal Breast Cancer
por: Millar, Ewan KA, et al.
Publicado: (2020) -
Multiplexed immunofluorescence identifies high stromal CD68(+)PD-L1(+) macrophages as a predictor of improved survival in triple negative breast cancer
por: Wang, James, et al.
Publicado: (2021) -
hist2RNA: An Efficient Deep Learning Architecture to Predict Gene Expression from Breast Cancer Histopathology Images
por: Mondol, Raktim Kumar, et al.
Publicado: (2023) -
Colorectal Cancer Survival Prediction Using Deep Distribution Based Multiple-Instance Learning
por: Li, Xingyu, et al.
Publicado: (2022) -
Breast cancer histopathology image-based gene expression prediction using spatial transcriptomics data and deep learning
por: Rahaman, Md Mamunur, et al.
Publicado: (2023)