Cargando…

Effects of virtual reality-based feedback on neurofeedback training performance—A sham-controlled study

Electroencephalography-neurofeedback (EEG-NF) has become a valuable tool in the field of psychology, e.g., to improve cognitive function. Nevertheless, a large percentage of NF users seem to be unable to control their own brain activation. Therefore, the aim of this study was to examine whether a di...

Descripción completa

Detalles Bibliográficos
Autores principales: Berger, Lisa M., Wood, Guilherme, Kober, Silvia E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411512/
https://www.ncbi.nlm.nih.gov/pubmed/36034118
http://dx.doi.org/10.3389/fnhum.2022.952261
Descripción
Sumario:Electroencephalography-neurofeedback (EEG-NF) has become a valuable tool in the field of psychology, e.g., to improve cognitive function. Nevertheless, a large percentage of NF users seem to be unable to control their own brain activation. Therefore, the aim of this study was to examine whether a different kind of visual feedback could positively influence NF performance after one training session. Virtual reality (VR) seems to have beneficial training effects and has already been reported to increase motivational training aspects. In the present study, we tested 61 young healthy adults (mean age: 23.48 years; 28 female) to investigate, whether 3D VR-based NF training has a more beneficial effect on the sensorimotor rhythm (SMR, 12–15 Hz) power increase than a mere 2D conventional NF paradigm. In the 3D group, participants had to roll a ball along a predefined path in an immersive virtual environment, whereas the 2D group had to increase the height of a bar. Both paradigms were presented using VR goggles. Participants completed one baseline and six feedback runs with 3 min each, in which they should try to increase SMR power over Cz. Half of the participants received real feedback whereas the other half received sham feedback. Participants receiving 3D VR-based feedback showed a linear increase in SMR power over the feedback runs within one training session. This was the case for the real as well as for the sham 3D feedback group and might be related to more general VR-related effects. The 2D group receiving the conventional bar feedback showed no changes in SMR power over the feedback runs. The present study underlines that the visual feedback modality has differential effects on the NF training performance and that 3D VR-based feedback has advantages over conventional 2D feedback.