Cargando…

Mathematical modeling of wear behavior and Abbott Firestone zones of 0.16C steel using response surface methodology

The effects of applied pressure and running velocity on wear behavior as well as Abbott Firestone zones of low carbon steel (0.16C) were evaluated using response surface methodology (RSM). At room temperature, three different pressures (0.5, 1.5, and 2.5 MPa) and three different velocities (1.5, 2.2...

Descripción completa

Detalles Bibliográficos
Autores principales: Elshaer, Ramadan N., El-Fawakhry, Mohamed K., Mattar, Taha, Farahat, Ahmed I. Z.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411595/
https://www.ncbi.nlm.nih.gov/pubmed/36008539
http://dx.doi.org/10.1038/s41598-022-18637-3
Descripción
Sumario:The effects of applied pressure and running velocity on wear behavior as well as Abbott Firestone zones of low carbon steel (0.16C) were evaluated using response surface methodology (RSM). At room temperature, three different pressures (0.5, 1.5, and 2.5 MPa) and three different velocities (1.5, 2.25, and 3 m/s) were used to conduct dry sliding wear trials utilizing the pin-on-disc method according to the experimental design technique (EDT). The experiments were created using central composite design (CCD) as a starting point. The relationship between input factors (pressure and velocity) and responses (wear rate and Abbott Firestone zones) of 0.16C steel was demonstrated using analysis of variance (ANOVA). The best models for wear rate as well as Abbott Firestone zones produced accurate data that could be estimated, saving time and cost. The results revealed that pressure had the greatest impact on the alloy’s dry sliding wear behavior of the two variables studied. In general, the predicted result shows close agreement with experimental results and hence created models could be utilized for the prediction of wear behavior and Abbott Firestone zones satisfactorily.