Cargando…
Experimental demonstration of adversarial examples in learning topological phases
Classification and identification of different phases and the transitions between them is a central task in condensed matter physics. Machine learning, which has achieved dramatic success in a wide range of applications, holds the promise to bring unprecedented perspectives for this challenging task...
Autores principales: | Zhang, Huili, Jiang, Si, Wang, Xin, Zhang, Wengang, Huang, Xianzhi, Ouyang, Xiaolong, Yu, Yefei, Liu, Yanqing, Deng, Dong-Ling, Duan, L.-M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411630/ https://www.ncbi.nlm.nih.gov/pubmed/36008401 http://dx.doi.org/10.1038/s41467-022-32611-7 |
Ejemplares similares
-
Universal adversarial examples and perturbations for quantum
classifiers
por: Gong, Weiyuan, et al.
Publicado: (2021) -
Minimum Adversarial Examples
por: Du, Zhenyu, et al.
Publicado: (2022) -
Adversarial example defense based on image reconstruction
por: Zhang, Yu(AUST), et al.
Publicado: (2021) -
Learning to Discriminate Adversarial Examples by Sensitivity Inconsistency in IoHT Systems
por: Zhang, Huan, et al.
Publicado: (2023) -
Approaching Adversarial Example Classification with Chaos Theory
por: Pedraza, Anibal, et al.
Publicado: (2020)