Cargando…
Shining a light on SSP4: A comprehensive analysis and biological applications for the detection of sulfane sulfurs
Fluorescent probes are useful tools for the detection of sulfane sulfurs in biological systems. In this work, we report the development of SSP4, a widely used probe generated in our laboratory. We describe its evolution, preparation, and physical/chemical properties. Fluorescence analyses of SSP4 de...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411671/ https://www.ncbi.nlm.nih.gov/pubmed/35987086 http://dx.doi.org/10.1016/j.redox.2022.102433 |
Sumario: | Fluorescent probes are useful tools for the detection of sulfane sulfurs in biological systems. In this work, we report the development of SSP4, a widely used probe generated in our laboratory. We describe its evolution, preparation, and physical/chemical properties. Fluorescence analyses of SSP4 determined its high selectivity and sensitivity to sulfane sulfurs, even with the interfering presence of other species, such as amino acids and metal ions. Protocols for using SSP4 in a relatively quick and simple manner for the detection of persulfidated proteins, including papain, BSA, and GAPDH were developed. The method was then applied to human protein disulfide isomerase (PDI), leading to the discovery that persulfidation can occur at PDI's non-active site cysteines, and that PDI reductase activity is affected by sulfane sulfur treatment. Protocols for using SSP4 for the bioimaging of exogenous and endogenous sulfane sulfurs in different -cell lines were also established. These results should guide further applications of SSP4. |
---|