Cargando…

SRflow: Deep learning based super-resolution of 4D-flow MRI data

Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify hemodynamics requires an adequate spatio-temporal vector field resolution at a low noise level. To address this challenge, we provide a learned solution to super-resolve in vivo 4D-flow MRI data at a post-processing level. We propo...

Descripción completa

Detalles Bibliográficos
Autores principales: Shit, Suprosanna, Zimmermann, Judith, Ezhov, Ivan, Paetzold, Johannes C., Sanches, Augusto F., Pirkl, Carolin, Menze, Bjoern H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411720/
https://www.ncbi.nlm.nih.gov/pubmed/36034591
http://dx.doi.org/10.3389/frai.2022.928181
Descripción
Sumario:Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify hemodynamics requires an adequate spatio-temporal vector field resolution at a low noise level. To address this challenge, we provide a learned solution to super-resolve in vivo 4D-flow MRI data at a post-processing level. We propose a deep convolutional neural network (CNN) that learns the inter-scale relationship of the velocity vector map and leverages an efficient residual learning scheme to make it computationally feasible. A novel, direction-sensitive, and robust loss function is crucial to learning vector-field data. We present a detailed comparative study between the proposed super-resolution and the conventional cubic B-spline based vector-field super-resolution. Our method improves the peak-velocity to noise ratio of the flow field by 10 and 30% for in vivo cardiovascular and cerebrovascular data, respectively, for 4 × super-resolution over the state-of-the-art cubic B-spline. Significantly, our method offers 10x faster inference over the cubic B-spline. The proposed approach for super-resolution of 4D-flow data would potentially improve the subsequent calculation of hemodynamic quantities.