Cargando…
SRflow: Deep learning based super-resolution of 4D-flow MRI data
Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify hemodynamics requires an adequate spatio-temporal vector field resolution at a low noise level. To address this challenge, we provide a learned solution to super-resolve in vivo 4D-flow MRI data at a post-processing level. We propo...
Autores principales: | Shit, Suprosanna, Zimmermann, Judith, Ezhov, Ivan, Paetzold, Johannes C., Sanches, Augusto F., Pirkl, Carolin, Menze, Bjoern H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411720/ https://www.ncbi.nlm.nih.gov/pubmed/36034591 http://dx.doi.org/10.3389/frai.2022.928181 |
Ejemplares similares
-
A comprehensive review of deep learning-based single image super-resolution
por: Bashir, Syed Muhammad Arsalan, et al.
Publicado: (2021) -
Robust, Primitive, and Unsupervised Quality Estimation for Segmentation Ensembles
por: Kofler, Florian, et al.
Publicado: (2021) -
An intelligence coordination system toward creating the super-intelligent law firm
por: Kaomea, Peter
Publicado: (2023) -
Artificial intelligence vs. evolving super-complex tumor intelligence: critical viewpoints
por: Sharma, Nilesh Kumar, et al.
Publicado: (2023) -
High Resolution, Annual Maps of Field Boundaries for Smallholder-Dominated Croplands at National Scales
por: Estes, Lyndon D., et al.
Publicado: (2022)