Cargando…
Efficient attention-based deep encoder and decoder for automatic crack segmentation
Recently, crack segmentation studies have been investigated using deep convolutional neural networks. However, significant deficiencies remain in the preparation of ground truth data, consideration of complex scenes, development of an object-specific network for crack segmentation, and use of an eva...
Autores principales: | Kang, Dong H, Cha, Young-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411784/ https://www.ncbi.nlm.nih.gov/pubmed/36039173 http://dx.doi.org/10.1177/14759217211053776 |
Ejemplares similares
-
Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images
por: Lewis, John, et al.
Publicado: (2023) -
Automatic Crack Detection on Road Pavements Using Encoder-Decoder Architecture
por: Fan, Zhun, et al.
Publicado: (2020) -
Automatic Polyp Segmentation in Colonoscopy Images Using a Modified Deep Convolutional Encoder-Decoder Architecture
por: Eu, Chin Yii, et al.
Publicado: (2021) -
Efficient U-Net Architecture with Multiple Encoders and Attention Mechanism Decoders for Brain Tumor Segmentation
por: Aboussaleh, Ilyasse, et al.
Publicado: (2023) -
Pixel-Level Fatigue Crack Segmentation in Large-Scale Images of Steel Structures Using an Encoder–Decoder Network
por: Dong, Chuanzhi, et al.
Publicado: (2021)