Cargando…
Rapid SARS-CoV-2 inactivation by mercury and LED UV-C lamps on different surfaces
SARS-CoV-2 remains infectious for several hours on surfaces. It can be inactivated by UV-C irradiation but optimal conditions for rapid inactivation, especially on non-plastic surfaces remains unclear. A SARS-CoV-2 inoculum was irradiated with a UV-C LED (265 nm) or a UV-C mercury lamp (254 nm). Inf...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411833/ https://www.ncbi.nlm.nih.gov/pubmed/36018503 http://dx.doi.org/10.1007/s43630-022-00292-2 |
Sumario: | SARS-CoV-2 remains infectious for several hours on surfaces. It can be inactivated by UV-C irradiation but optimal conditions for rapid inactivation, especially on non-plastic surfaces remains unclear. A SARS-CoV-2 inoculum was irradiated with a UV-C LED (265 nm) or a UV-C mercury lamp (254 nm). Infectivity titers (TCID(50)/mL) and inactivation rates were then quantified on plastic, steel, tissue, paper and cardboard surfaces. We demonstrated that efficient SARS-CoV-2 inactivation (> 99.999% on plastic and steel, ≥ 99.8% on tissue, paper and cardboard) can be achieved by both a UV-C mercury lamp and a UV-C LED after 30 s of irradiations at 3 cm, corresponding to UV-C doses of 92.85 and 44.7 mJ/cm(2), respectively. Inactivation on a plastic surface was more efficient with the mercury UV-C lamp (p < 0.005). The mercury UV-C lamp could be more relevant than the LED in high-risk settings, such as medical care or research laboratories. GRAPHICAL ABSTRACT: [Image: see text] |
---|