Cargando…
How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study
Bidirectional generative adversarial networks (BiGANs) and cycle generative adversarial networks (CycleGANs) are two emerging machine learning models that, up to now, have been used as generative models, i.e., to generate output data sampled from a target probability distribution. However, these mod...
Autores principales: | Sarv Ahrabi, Sima, Momenzadeh, Alireza, Baccarelli, Enzo, Scarpiniti, Michele, Piazzo, Lorenzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411851/ https://www.ncbi.nlm.nih.gov/pubmed/36042937 http://dx.doi.org/10.1007/s11227-022-04775-y |
Ejemplares similares
-
A novel unsupervised approach based on the hidden features of Deep Denoising Autoencoders for COVID-19 disease detection
por: Scarpiniti, Michele, et al.
Publicado: (2022) -
Exploiting probability density function of deep convolutional autoencoders’ latent space for reliable COVID-19 detection on CT scans
por: Sarv Ahrabi, Sima, et al.
Publicado: (2022) -
ADE-CycleGAN: A Detail Enhanced Image Dehazing CycleGAN Network
por: Yan, Bingnan, et al.
Publicado: (2023) -
Comparative analysis of CycleGAN and AttentionGAN on face aging application
por: Sharma, Neha, et al.
Publicado: (2022) -
CycleGAN for interpretable online EMT compensation
por: Krumb, Henry, et al.
Publicado: (2021)