Cargando…
Triplanar U-Net with lesion-wise voting for the segmentation of new lesions on longitudinal MRI studies
We present a deep learning method for the segmentation of new lesions in longitudinal FLAIR MRI sequences acquired at two different time points. In our approach, the 3D volumes are processed slice-wise across the coronal, axial, and sagittal planes and the predictions from the three orientations are...
Autores principales: | Hitziger, Sebastian, Ling, Wen Xin, Fritz, Thomas, D'Albis, Tiziano, Lemke, Andreas, Grilo, Joana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412001/ https://www.ncbi.nlm.nih.gov/pubmed/36033604 http://dx.doi.org/10.3389/fnins.2022.964250 |
Ejemplares similares
-
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
por: Sundaresan, Vaanathi, et al.
Publicado: (2021) -
Modified U-NET Architecture for Segmentation of Skin Lesion
por: Anand, Vatsala, et al.
Publicado: (2022) -
ALL-Net: Anatomical information lesion-wise loss function integrated into neural network for multiple sclerosis lesion segmentation
por: Zhang, Hang, et al.
Publicado: (2021) -
Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture
por: Lee, Bumshik, et al.
Publicado: (2020) -
FFU-Net: Feature Fusion U-Net for Lesion Segmentation of Diabetic Retinopathy
por: Xu, Yifei, et al.
Publicado: (2021)