Cargando…
Training machine learning models with synthetic data improves the prediction of ventricular origin in outflow tract ventricular arrhythmias
In order to determine the site of origin (SOO) in outflow tract ventricular arrhythmias (OTVAs) before an ablation procedure, several algorithms based on manual identification of electrocardiogram (ECG) features, have been developed. However, the reported accuracy decreases when tested with differen...
Autores principales: | Doste, Ruben, Lozano, Miguel, Jimenez-Perez, Guillermo, Mont, Lluis, Berruezo, Antonio, Penela, Diego, Camara, Oscar, Sebastian, Rafael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412034/ https://www.ncbi.nlm.nih.gov/pubmed/36035489 http://dx.doi.org/10.3389/fphys.2022.909372 |
Ejemplares similares
-
Automatic Detection of Slow Conducting Channels during Substrate Ablation of Scar-Related Ventricular Arrhythmias
por: Alcaine, Alejandro, et al.
Publicado: (2020) -
Comparative analysis of electrocardiographic imaging and ECG
in predicting the origin of outflow tract ventricular
arrhythmias
por: Zhou, Xinbin, et al.
Publicado: (2020) -
Investigating Origins of Ventricular Arrhythmia Arising From Right Ventricular Outflow Tract and Comparing Initial Ablation Strategies
por: Jiang, Zhi, et al.
Publicado: (2021) -
A Four-Stepwise Electrocardiographic Algorithm for Differentiation of Ventricular Arrhythmias Originated from Left Ventricular Outflow Tract
por: Tan, Hong-Wei, et al.
Publicado: (2022) -
Idiopathic Outflow Tract Ventricular Arrhythmia Ablation: Pearls and Pitfalls
por: Liang, Jackson J, et al.
Publicado: (2019)