Cargando…

A new index for quantifying the ornamentational complexity of animals with shells

Morphological complexity reflects the biological structure of an organism and is closely linked to its associated functions and phylogenetics. In animals with shells, ornamentation is an important characteristic of morphological complexity, and it has various functions. However, because of the varia...

Descripción completa

Detalles Bibliográficos
Autores principales: Miao, Luyi, Dai, Xu, Song, Hanchen, Backes, André Ricardo, Song, Haijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412138/
https://www.ncbi.nlm.nih.gov/pubmed/36035271
http://dx.doi.org/10.1002/ece3.9247
Descripción
Sumario:Morphological complexity reflects the biological structure of an organism and is closely linked to its associated functions and phylogenetics. In animals with shells, ornamentation is an important characteristic of morphological complexity, and it has various functions. However, because of the variations in type, shape, density, and strength of ornamentation, a universal quantitative measure of morphological complexity for shelled animals is lacking. We propose an ornamentation index (OI) derived from 3D scanning technology and a virtual model for quantifying ornamentation complexity. This index is designed to measure the extent of folding associated with ornamentation, regardless of shape and size. Ornamentation indices were measured for 15 ammonite specimens from the Permian to Cretaceous, 2 modern bivalves, 2 gastropods from the Pliocene to the present, and a modern echinoid. Compared with other measurements, such as the fractal dimension, rugosity, and surface‐volume ratio, the OI displayed superiority in quantifying ornamentational complexity. The present study demonstrates that the OI is suitable for accurately characterizing and quantifying ornamentation complexity, regardless of shape and size. Therefore, the OI is potentially useful for comparing the ornamentational complexity of various organisms and can be exploited to provide further insight into the evolution of conchs. Ultimately, the OI can enhance our understanding of morphological evolution of shelled organisms, for example, whether shell ornaments simplify under ocean acidification or extinction, and how predation pressure is reflected in ornamentation complexity.