Cargando…

Use of Chitosan as Copper Binder in the Continuous Electrochemical Reduction of CO(2) to Ethylene in Alkaline Medium

This work explores the potential of novel renewable materials in electrode fabrication for the electrochemical conversion of carbon dioxide (CO(2)) to ethylene in alkaline media. In this regard, the use of the renewable chitosan (CS) biopolymer as ion-exchange binder of the copper (Cu) electrocataly...

Descripción completa

Detalles Bibliográficos
Autores principales: Marcos-Madrazo, Aitor, Casado-Coterillo, Clara, Iniesta, Jesús, Irabien, Angel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412364/
https://www.ncbi.nlm.nih.gov/pubmed/36005698
http://dx.doi.org/10.3390/membranes12080783
Descripción
Sumario:This work explores the potential of novel renewable materials in electrode fabrication for the electrochemical conversion of carbon dioxide (CO(2)) to ethylene in alkaline media. In this regard, the use of the renewable chitosan (CS) biopolymer as ion-exchange binder of the copper (Cu) electrocatalyst nanoparticles (NPs) is compared with commercial anion-exchange binders Sustainion and Fumion on the fabrication of gas diffusion electrodes (GDEs) for the electrochemical reduction of carbon dioxide (CO(2)R) in an alkaline medium. They were tested in membrane electrode assemblies (MEAs), where selectivity to ethylene (C(2)H(4)) increased when using the Cu:CS GDE compared to the Cu:Sustainion and Cu:Fumion GDEs, respectively, with a Faradaic efficiency (FE) of 93.7% at 10 mA cm(−2) and a cell potential of −1.9 V, with a C(2)H(4) production rate of 420 µmol m(−2) s(−1) for the Cu:CS GDE. Upon increasing current density to 90 mA cm(−2), however, the production rate of the Cu:CS GDE rose to 509 µmol/m(2)s but the FE dropped to 69% due to increasing hydrogen evolution reaction (HER) competition. The control of mass transport limitations by tuning up the membrane overlayer properties in membrane coated electrodes (MCE) prepared by coating a CS-based membrane over the Cu:CS GDE enhanced its selectivity to C(2)H(4) to a FE of 98% at 10 mA cm(−2) with negligible competing HER. The concentration of carbon monoxide was below the experimental detection limit irrespective of the current density, with no CO(2) crossover to the anodic compartment. This study suggests there may be potential in sustainable alernatives to fossil-based or perfluorinated materials in ion-exchange membrane and electrode fabrication, which constitute a step forward towards decarbonization in the circular economy perspective.