Cargando…

Electrochemical and Mechanical Properties of Cathodically Protected X80 Steel in Different Temperature Soil

For the application of X80 pipelines in Northeast China, it is important to establish the correct cathodic protection (CP) potential. To achieve this, potentiodynamic polarization; electrochemical impedance spectroscopy (EIS); a slow strain rate test (SSRT); and a scanning electron microscopy (SEM)...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Wenhui, Meng, Yanbing, Zhao, Jun, Wen, Wen, Gong, Ming, Wu, Shixiong, Li, Songmei, Yu, Mei, Liu, Jianhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412431/
https://www.ncbi.nlm.nih.gov/pubmed/36013667
http://dx.doi.org/10.3390/ma15165526
Descripción
Sumario:For the application of X80 pipelines in Northeast China, it is important to establish the correct cathodic protection (CP) potential. To achieve this, potentiodynamic polarization; electrochemical impedance spectroscopy (EIS); a slow strain rate test (SSRT); and a scanning electron microscopy (SEM) fracture morphology analysis were carried out for an X80 steel gas pipeline at several temperatures in Heilongjiang Province, China. The results show that the hydrogen evolution potential of X80 steel in soil at different temperatures was about −900 mV (vs. CSE). The generated hydrogen atoms can be adsorbed on the surface of the pipelines to reduce the surface energy, or they can be diffused into the substrate and accumulate to the critical concentration, inducing the decohesion between different structures and generating additional plastic deformation through dislocation motion. With the peak impedance potential as the minimum potential and the hydrogen embrittlement potential as the maximum potential, the CP potential of X80 steel in the soil at 30 °C, 45 °C, and 60 °C ranged from −900 mV to −1100 mV (vs. CSE), temperatures at which the X80 steel does not corrode or cause hydrogen embrittlement.