Cargando…
Deblurring Ghost Imaging Reconstruction Based on Underwater Dataset Generated by Few-Shot Learning
Underwater ghost imaging based on deep learning can effectively reduce the influence of forward scattering and back scattering of water. With the help of data-driven methods, high-quality results can be reconstructed. However, the training of the underwater ghost imaging requires enormous paired und...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412451/ https://www.ncbi.nlm.nih.gov/pubmed/36015921 http://dx.doi.org/10.3390/s22166161 |
Sumario: | Underwater ghost imaging based on deep learning can effectively reduce the influence of forward scattering and back scattering of water. With the help of data-driven methods, high-quality results can be reconstructed. However, the training of the underwater ghost imaging requires enormous paired underwater datasets, which are difficult to obtain directly. Although the Cycle-GAN method solves the problem to some extent, the blurring degree of the fuzzy class of the paired underwater datasets generated by Cycle-GAN is relatively unitary. To solve this problem, a few-shot underwater image generative network method is proposed. Utilizing the proposed few-shot learning image generative method, the generated paired underwater datasets are better than those obtained by the Cycle-GAN method, especially under the condition of few real underwater datasets. In addition, to reconstruct high-quality results, an underwater deblurring ghost imaging method is proposed. The reconstruction method consists of two parts: reconstruction and deblurring. The experimental and simulation results show that the proposed reconstruction method has better performance in deblurring at a low sampling rate, compared with existing underwater ghost imaging methods based on deep learning. The proposed reconstruction method can effectively increase the clarity degree of the underwater reconstruction target at a low sampling rate and promotes the further applications of underwater ghost imaging. |
---|