Cargando…

Relation between Mass Sensitivity and Complex Power Flow in Love Wave Sensors

In this paper, we investigate the connection between average power flows in Love wave waveguides with the mass sensitivity of Love wave sensors. In fact, loading with a Newtonian liquid gives rise to two extra power flows, in the transverse direction towards the loading Newtonian liquid. The first i...

Descripción completa

Detalles Bibliográficos
Autor principal: Kiełczyński, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412467/
https://www.ncbi.nlm.nih.gov/pubmed/36015861
http://dx.doi.org/10.3390/s22166100
Descripción
Sumario:In this paper, we investigate the connection between average power flows in Love wave waveguides with the mass sensitivity of Love wave sensors. In fact, loading with a Newtonian liquid gives rise to two extra power flows, in the transverse direction towards the loading Newtonian liquid. The first is an active power flow feeding viscous losses in the Newtonian liquid and the second is a reactive power flow that is responsible for the phase delay of the Love wave and consequently for the changes in phase velocity of the Love wave. Since loading with a lossless mass also leads to changes in the phase velocity, we assert that mass sensitivity [Formula: see text] of Love wave sensors is connected to the average reactive power flow, in the transverse direction [Formula: see text] , bouncing back and forth, between the interior of the waveguide and the loading Newtonian liquid. Subsequently, we found the thickness of the effective surface layer of mass that is equivalent to loading with a semi-infinite Newtonian liquid. The analytical formulas developed in this paper are illustrated by the results of numerical calculations performed for an exemplary Love wave waveguide composed of a PMMA surface layer deposited on an ST-Quartz substrate.