Cargando…
Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding
Nowadays, drug–target interactions (DTIs) prediction is a fundamental part of drug repositioning. However, on the one hand, drug–target interactions prediction models usually consider drugs or targets information, which ignore prior knowledge between drugs and targets. On the other hand, models inco...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412517/ https://www.ncbi.nlm.nih.gov/pubmed/36014371 http://dx.doi.org/10.3390/molecules27165131 |
_version_ | 1784775513607241728 |
---|---|
author | Li, Jiaxin Yang, Xixin Guan, Yuanlin Pan, Zhenkuan |
author_facet | Li, Jiaxin Yang, Xixin Guan, Yuanlin Pan, Zhenkuan |
author_sort | Li, Jiaxin |
collection | PubMed |
description | Nowadays, drug–target interactions (DTIs) prediction is a fundamental part of drug repositioning. However, on the one hand, drug–target interactions prediction models usually consider drugs or targets information, which ignore prior knowledge between drugs and targets. On the other hand, models incorporating priori knowledge cannot make interactions prediction for under-studied drugs and targets. Hence, this article proposes a novel dual-network integrated logistic matrix factorization DTIs prediction scheme (Ro-DNILMF) via a knowledge graph embedding approach. This model adds prior knowledge as input data into the prediction model and inherits the advantages of the DNILMF model, which can predict under-studied drug–target interactions. Firstly, a knowledge graph embedding model based on relational rotation (RotatE) is trained to construct the interaction adjacency matrix and integrate prior knowledge. Secondly, a dual-network integrated logistic matrix factorization prediction model (DNILMF) is used to predict new drugs and targets. Finally, several experiments conducted on the public datasets are used to demonstrate that the proposed method outperforms the single base-line model and some mainstream methods on efficiency. |
format | Online Article Text |
id | pubmed-9412517 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94125172022-08-27 Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding Li, Jiaxin Yang, Xixin Guan, Yuanlin Pan, Zhenkuan Molecules Article Nowadays, drug–target interactions (DTIs) prediction is a fundamental part of drug repositioning. However, on the one hand, drug–target interactions prediction models usually consider drugs or targets information, which ignore prior knowledge between drugs and targets. On the other hand, models incorporating priori knowledge cannot make interactions prediction for under-studied drugs and targets. Hence, this article proposes a novel dual-network integrated logistic matrix factorization DTIs prediction scheme (Ro-DNILMF) via a knowledge graph embedding approach. This model adds prior knowledge as input data into the prediction model and inherits the advantages of the DNILMF model, which can predict under-studied drug–target interactions. Firstly, a knowledge graph embedding model based on relational rotation (RotatE) is trained to construct the interaction adjacency matrix and integrate prior knowledge. Secondly, a dual-network integrated logistic matrix factorization prediction model (DNILMF) is used to predict new drugs and targets. Finally, several experiments conducted on the public datasets are used to demonstrate that the proposed method outperforms the single base-line model and some mainstream methods on efficiency. MDPI 2022-08-12 /pmc/articles/PMC9412517/ /pubmed/36014371 http://dx.doi.org/10.3390/molecules27165131 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Jiaxin Yang, Xixin Guan, Yuanlin Pan, Zhenkuan Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding |
title | Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding |
title_full | Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding |
title_fullStr | Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding |
title_full_unstemmed | Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding |
title_short | Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding |
title_sort | prediction of drug–target interaction using dual-network integrated logistic matrix factorization and knowledge graph embedding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412517/ https://www.ncbi.nlm.nih.gov/pubmed/36014371 http://dx.doi.org/10.3390/molecules27165131 |
work_keys_str_mv | AT lijiaxin predictionofdrugtargetinteractionusingdualnetworkintegratedlogisticmatrixfactorizationandknowledgegraphembedding AT yangxixin predictionofdrugtargetinteractionusingdualnetworkintegratedlogisticmatrixfactorizationandknowledgegraphembedding AT guanyuanlin predictionofdrugtargetinteractionusingdualnetworkintegratedlogisticmatrixfactorizationandknowledgegraphembedding AT panzhenkuan predictionofdrugtargetinteractionusingdualnetworkintegratedlogisticmatrixfactorizationandknowledgegraphembedding |