Cargando…
Prediction of Drug–Target Interaction Using Dual-Network Integrated Logistic Matrix Factorization and Knowledge Graph Embedding
Nowadays, drug–target interactions (DTIs) prediction is a fundamental part of drug repositioning. However, on the one hand, drug–target interactions prediction models usually consider drugs or targets information, which ignore prior knowledge between drugs and targets. On the other hand, models inco...
Autores principales: | Li, Jiaxin, Yang, Xixin, Guan, Yuanlin, Pan, Zhenkuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412517/ https://www.ncbi.nlm.nih.gov/pubmed/36014371 http://dx.doi.org/10.3390/molecules27165131 |
Ejemplares similares
-
Predicting drug-target interactions by dual-network integrated logistic matrix factorization
por: Hao, Ming, et al.
Publicado: (2017) -
Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Logistic Matrix Factorization
por: Wang, Aizhen, et al.
Publicado: (2021) -
Enhancing drug–drug interaction prediction by three-way decision and knowledge graph embedding
por: Hao, Xinkun, et al.
Publicado: (2022) -
Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction in realistic settings
por: Celebi, Remzi, et al.
Publicado: (2019) -
Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study
por: Wang, Meng, et al.
Publicado: (2021)