Cargando…
Data Augmentation for Deep-Learning-Based Multiclass Structural Damage Detection Using Limited Information
The deterioration of infrastructure’s health has become more predominant on a global scale during the 21st century. Aging infrastructure as well as those structures damaged by natural disasters have prompted the research community to improve state-of-the-art methodologies for conducting Structural H...
Autores principales: | Dunphy, Kyle, Fekri, Mohammad Navid, Grolinger, Katarina, Sadhu, Ayan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412832/ https://www.ncbi.nlm.nih.gov/pubmed/36015955 http://dx.doi.org/10.3390/s22166193 |
Ejemplares similares
-
Deep Learning-Based Multiclass Instance Segmentation for Dental Lesion Detection
por: Fatima, Anum, et al.
Publicado: (2023) -
LiDAR-Based Structural Health Monitoring: Applications in Civil Infrastructure Systems
por: Kaartinen, Elise, et al.
Publicado: (2022) -
Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning
por: Wang, H., et al.
Publicado: (2021) -
Multivariate empirical mode decomposition–based structural damage localization using limited sensors
por: Sony, Sandeep, et al.
Publicado: (2021) -
DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning
por: Olsen, Alex, et al.
Publicado: (2019)