Cargando…
The Role of Artificial Intelligence in Predicting Outcomes by Cardiovascular Magnetic Resonance: A Comprehensive Systematic Review
Background and Objectives: Interest in artificial intelligence (AI) for outcome prediction has grown substantially in recent years. However, the prognostic role of AI using advanced cardiac magnetic resonance imaging (CMR) remains unclear. This systematic review assesses the existing literature on A...
Autores principales: | Assadi, Hosamadin, Alabed, Samer, Maiter, Ahmed, Salehi, Mahan, Li, Rui, Ripley, David P., Van der Geest, Rob J., Zhong, Yumin, Zhong, Liang, Swift, Andrew J., Garg, Pankaj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412853/ https://www.ncbi.nlm.nih.gov/pubmed/36013554 http://dx.doi.org/10.3390/medicina58081087 |
Ejemplares similares
-
Left Ventricular Blood Flow Kinetic Energy Assessment by 4D Flow Cardiovascular Magnetic Resonance: A Systematic Review of the Clinical Relevance †
por: Kaur, Harjinder, et al.
Publicado: (2020) -
How should studies using AI be reported? lessons from a systematic review in cardiac MRI
por: Maiter, Ahmed, et al.
Publicado: (2023) -
Quality of reporting in AI cardiac MRI segmentation studies – A systematic review and recommendations for future studies
por: Alabed, Samer, et al.
Publicado: (2022) -
Artificial Intelligence as a Diagnostic Tool in Non-Invasive Imaging in the Assessment of Coronary Artery Disease
por: Doolub, Gemina, et al.
Publicado: (2023) -
Automated 4D flow cardiac MRI pipeline to derive peak mitral inflow diastolic velocities using short-axis cine stack: two centre validation study against echocardiographic pulse-wave doppler
por: Assadi, Hosamadin, et al.
Publicado: (2023)