Cargando…
Research on Integral Fabrication and Inner Surface Metallization of the High-Frequency Terahertz Hollow-Core Metal Rectangular Waveguide Cavity by a Combined Process Based on Wire Electrochemical Micromachining and Electrochemical Deposition
With the development of fabrication technology for terahertz rectangular cavity devices, the fabrication process of integral terahertz waveguide cavities has received much attention because of its beneficial effect on improving the transmission of terahertz signals. However, smaller feature sizes, h...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412866/ https://www.ncbi.nlm.nih.gov/pubmed/36014267 http://dx.doi.org/10.3390/mi13081346 |
Sumario: | With the development of fabrication technology for terahertz rectangular cavity devices, the fabrication process of integral terahertz waveguide cavities has received much attention because of its beneficial effect on improving the transmission of terahertz signals. However, smaller feature sizes, higher dimensional accuracy, and more stringent requirements for cavity surface roughness and edge radius make it difficult to manufacture terahertz waveguide cavities with a high operating frequency by using existing micro-manufacturing technology. At the same time, the smaller feature size also makes it more difficult to realize uniform metallization on the inner surface of a terahertz waveguide cavity. In this paper, a new and improved combined manufacturing process based on wire electrochemical micromachining and electrochemical deposition is proposed to realize the integral fabrication and uniform metallization of the inner surface of a high-frequency terahertz metal rectangular waveguide cavity. A detailed description and analysis of this combined process are carried out, together with corresponding experimental investigations. An integral 1.7 THz hollow-core metal rectangular waveguide cavity with an end-face size of 165.9 μm × 88.3 μm, an edge radius of less than 10 μm, an internal bottom surface roughness of less than 0.10 μm, and an internal side surface roughness of less than 0.40 μm was manufactured, and high-quality metallization of its inner surface was also achieved. |
---|