Cargando…
Statistical quantification of confounding bias in machine learning models
BACKGROUND: The lack of nonparametric statistical tests for confounding bias significantly hampers the development of robust, valid, and generalizable predictive models in many fields of research. Here I propose the partial confounder test, which, for a given confounder variable, probes the null hyp...
Autor principal: | Spisak, Tamas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412867/ https://www.ncbi.nlm.nih.gov/pubmed/36017878 http://dx.doi.org/10.1093/gigascience/giac082 |
Ejemplares similares
-
Confound-leakage: confound removal in machine learning leads to leakage
por: Hamdan, Sami, et al.
Publicado: (2023) -
Misspecification of confounder-exposure and confounder-outcome associations leads to bias in effect estimates
por: Schuster, Noah A., et al.
Publicado: (2023) -
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
por: Nariya, Maulik K., et al.
Publicado: (2023) -
Paired evaluation of machine-learning models characterizes effects of confounders and outliers
por: Nariya, Maulik K., et al.
Publicado: (2023) -
Assessing bias: the importance of considering confounding
por: Skelly, Andrea C., et al.
Publicado: (2012)