Cargando…
Subtherapeutic Doses of Vancomycin Synergize with Bacteriophages for Treatment of Experimental Methicillin-Resistant Staphylococcus aureus Infective Endocarditis
Background. Recurrent therapeutic failures reported for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) with vancomycin may be due to poor bactericidal activity. Alternative antibacterial approaches using bacteriophages may overcome this limitation. Ob...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412893/ https://www.ncbi.nlm.nih.gov/pubmed/36016414 http://dx.doi.org/10.3390/v14081792 |
_version_ | 1784775604623638528 |
---|---|
author | Save, Jonathan Que, Yok-Ai Entenza, José Resch, Grégory |
author_facet | Save, Jonathan Que, Yok-Ai Entenza, José Resch, Grégory |
author_sort | Save, Jonathan |
collection | PubMed |
description | Background. Recurrent therapeutic failures reported for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) with vancomycin may be due to poor bactericidal activity. Alternative antibacterial approaches using bacteriophages may overcome this limitation. Objectives. An experimental rat model of MRSA IE (EE) was used to examine the efficacy of vancomycin combined with a 1:1 bacteriophage (phage) cocktail composed of Herelleviridae vB_SauH_2002 and Routreeviridae 66. Methods. Six hours after inoculation with ca. 5 log(10) colony forming units (CFU) of MRSA strain AW7, animals were treated with either: (i) saline, (ii) an equimolar two-phage cocktail (bolus of 1 mL followed by a 0.3 mL/h continuous infusion of 10 log(10) plaque forming units (PFU)/mL phage suspension), (iii) vancomycin (at a dose mimicking the kinetics in humans of 0.5 g b.i.d.), or (iv) a combination of both. Bacterial loads in vegetations, and phage loads in vegetations, liver, kidney, spleen, and blood, were measured outcomes. Results. Phage cocktail alone was unable to control the growth of strain AW7 in cardiac vegetations. However, when combined with subtherapeutic doses of vancomycin, a statistically significant decrease of ∆4.05 ± 0.94 log(10) CFU/g at 24 h compared to placebo was detected (p < 0.001). The administration of vancomycin was found to significantly impact on the local concentrations of phages in the vegetations and in the organs examined. Conclusions. Lytic bacteriophages as an adjunct treatment to the standard of care antibiotics could potentially improve the management of MRSA IE. Further studies are needed to investigate the impact of antibiotics on phage replication in vivo. |
format | Online Article Text |
id | pubmed-9412893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94128932022-08-27 Subtherapeutic Doses of Vancomycin Synergize with Bacteriophages for Treatment of Experimental Methicillin-Resistant Staphylococcus aureus Infective Endocarditis Save, Jonathan Que, Yok-Ai Entenza, José Resch, Grégory Viruses Article Background. Recurrent therapeutic failures reported for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) with vancomycin may be due to poor bactericidal activity. Alternative antibacterial approaches using bacteriophages may overcome this limitation. Objectives. An experimental rat model of MRSA IE (EE) was used to examine the efficacy of vancomycin combined with a 1:1 bacteriophage (phage) cocktail composed of Herelleviridae vB_SauH_2002 and Routreeviridae 66. Methods. Six hours after inoculation with ca. 5 log(10) colony forming units (CFU) of MRSA strain AW7, animals were treated with either: (i) saline, (ii) an equimolar two-phage cocktail (bolus of 1 mL followed by a 0.3 mL/h continuous infusion of 10 log(10) plaque forming units (PFU)/mL phage suspension), (iii) vancomycin (at a dose mimicking the kinetics in humans of 0.5 g b.i.d.), or (iv) a combination of both. Bacterial loads in vegetations, and phage loads in vegetations, liver, kidney, spleen, and blood, were measured outcomes. Results. Phage cocktail alone was unable to control the growth of strain AW7 in cardiac vegetations. However, when combined with subtherapeutic doses of vancomycin, a statistically significant decrease of ∆4.05 ± 0.94 log(10) CFU/g at 24 h compared to placebo was detected (p < 0.001). The administration of vancomycin was found to significantly impact on the local concentrations of phages in the vegetations and in the organs examined. Conclusions. Lytic bacteriophages as an adjunct treatment to the standard of care antibiotics could potentially improve the management of MRSA IE. Further studies are needed to investigate the impact of antibiotics on phage replication in vivo. MDPI 2022-08-16 /pmc/articles/PMC9412893/ /pubmed/36016414 http://dx.doi.org/10.3390/v14081792 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Save, Jonathan Que, Yok-Ai Entenza, José Resch, Grégory Subtherapeutic Doses of Vancomycin Synergize with Bacteriophages for Treatment of Experimental Methicillin-Resistant Staphylococcus aureus Infective Endocarditis |
title | Subtherapeutic Doses of Vancomycin Synergize with Bacteriophages for Treatment of Experimental Methicillin-Resistant Staphylococcus aureus Infective Endocarditis |
title_full | Subtherapeutic Doses of Vancomycin Synergize with Bacteriophages for Treatment of Experimental Methicillin-Resistant Staphylococcus aureus Infective Endocarditis |
title_fullStr | Subtherapeutic Doses of Vancomycin Synergize with Bacteriophages for Treatment of Experimental Methicillin-Resistant Staphylococcus aureus Infective Endocarditis |
title_full_unstemmed | Subtherapeutic Doses of Vancomycin Synergize with Bacteriophages for Treatment of Experimental Methicillin-Resistant Staphylococcus aureus Infective Endocarditis |
title_short | Subtherapeutic Doses of Vancomycin Synergize with Bacteriophages for Treatment of Experimental Methicillin-Resistant Staphylococcus aureus Infective Endocarditis |
title_sort | subtherapeutic doses of vancomycin synergize with bacteriophages for treatment of experimental methicillin-resistant staphylococcus aureus infective endocarditis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412893/ https://www.ncbi.nlm.nih.gov/pubmed/36016414 http://dx.doi.org/10.3390/v14081792 |
work_keys_str_mv | AT savejonathan subtherapeuticdosesofvancomycinsynergizewithbacteriophagesfortreatmentofexperimentalmethicillinresistantstaphylococcusaureusinfectiveendocarditis AT queyokai subtherapeuticdosesofvancomycinsynergizewithbacteriophagesfortreatmentofexperimentalmethicillinresistantstaphylococcusaureusinfectiveendocarditis AT entenzajose subtherapeuticdosesofvancomycinsynergizewithbacteriophagesfortreatmentofexperimentalmethicillinresistantstaphylococcusaureusinfectiveendocarditis AT reschgregory subtherapeuticdosesofvancomycinsynergizewithbacteriophagesfortreatmentofexperimentalmethicillinresistantstaphylococcusaureusinfectiveendocarditis |