Cargando…

Modeling and Prediction of Thermophysiological Comfort Properties of a Single Layer Fabric System Using Single Sector Sweating Torso

Thermophysiological comfort is known to play a primary role in maintaining thermal balance, which corresponds to a person’s satisfaction with their immediate thermal environment. Among the existing test methods, sweating torsos are one of the best tools to provide a combined measurement of heat and...

Descripción completa

Detalles Bibliográficos
Autores principales: Gholamreza, Farzan, Su, Yang, Li, Ruoyao, Nadaraja, Anupama Vijaya, Gathercole, Robert, Li, Ri, Dolez, Patricia I., Golovin, Kevin, Rossi, René M., Annaheim, Simon, Milani, Abbas S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412942/
https://www.ncbi.nlm.nih.gov/pubmed/36013923
http://dx.doi.org/10.3390/ma15165786
_version_ 1784775616755662848
author Gholamreza, Farzan
Su, Yang
Li, Ruoyao
Nadaraja, Anupama Vijaya
Gathercole, Robert
Li, Ri
Dolez, Patricia I.
Golovin, Kevin
Rossi, René M.
Annaheim, Simon
Milani, Abbas S.
author_facet Gholamreza, Farzan
Su, Yang
Li, Ruoyao
Nadaraja, Anupama Vijaya
Gathercole, Robert
Li, Ri
Dolez, Patricia I.
Golovin, Kevin
Rossi, René M.
Annaheim, Simon
Milani, Abbas S.
author_sort Gholamreza, Farzan
collection PubMed
description Thermophysiological comfort is known to play a primary role in maintaining thermal balance, which corresponds to a person’s satisfaction with their immediate thermal environment. Among the existing test methods, sweating torsos are one of the best tools to provide a combined measurement of heat and moisture transfer using non-isothermal conditions. This study presents a preliminary numerical model of a single sector sweating torso to predict the thermophysiological comfort properties of fabric systems. The model has been developed using COMSOL Multiphysics, based on the ISO 18640-1 standard test method and a single layer fabric system used in sportswear. A good agreement was observed between the experimental and numeral results over different exposure phases simulated by the torso test (R(2) = 0.72 to 0.99). The model enables a systematic investigation of the effect of fabric properties (thickness, porosity, thermal resistance, and evaporative resistance), environmental conditions (relative humidity, air and radiant temperature, and wind speed), and physiological parameters (sweating rate) to gain an enhanced understanding of the thermophysiological comfort properties of the fabric system.
format Online
Article
Text
id pubmed-9412942
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94129422022-08-27 Modeling and Prediction of Thermophysiological Comfort Properties of a Single Layer Fabric System Using Single Sector Sweating Torso Gholamreza, Farzan Su, Yang Li, Ruoyao Nadaraja, Anupama Vijaya Gathercole, Robert Li, Ri Dolez, Patricia I. Golovin, Kevin Rossi, René M. Annaheim, Simon Milani, Abbas S. Materials (Basel) Article Thermophysiological comfort is known to play a primary role in maintaining thermal balance, which corresponds to a person’s satisfaction with their immediate thermal environment. Among the existing test methods, sweating torsos are one of the best tools to provide a combined measurement of heat and moisture transfer using non-isothermal conditions. This study presents a preliminary numerical model of a single sector sweating torso to predict the thermophysiological comfort properties of fabric systems. The model has been developed using COMSOL Multiphysics, based on the ISO 18640-1 standard test method and a single layer fabric system used in sportswear. A good agreement was observed between the experimental and numeral results over different exposure phases simulated by the torso test (R(2) = 0.72 to 0.99). The model enables a systematic investigation of the effect of fabric properties (thickness, porosity, thermal resistance, and evaporative resistance), environmental conditions (relative humidity, air and radiant temperature, and wind speed), and physiological parameters (sweating rate) to gain an enhanced understanding of the thermophysiological comfort properties of the fabric system. MDPI 2022-08-22 /pmc/articles/PMC9412942/ /pubmed/36013923 http://dx.doi.org/10.3390/ma15165786 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gholamreza, Farzan
Su, Yang
Li, Ruoyao
Nadaraja, Anupama Vijaya
Gathercole, Robert
Li, Ri
Dolez, Patricia I.
Golovin, Kevin
Rossi, René M.
Annaheim, Simon
Milani, Abbas S.
Modeling and Prediction of Thermophysiological Comfort Properties of a Single Layer Fabric System Using Single Sector Sweating Torso
title Modeling and Prediction of Thermophysiological Comfort Properties of a Single Layer Fabric System Using Single Sector Sweating Torso
title_full Modeling and Prediction of Thermophysiological Comfort Properties of a Single Layer Fabric System Using Single Sector Sweating Torso
title_fullStr Modeling and Prediction of Thermophysiological Comfort Properties of a Single Layer Fabric System Using Single Sector Sweating Torso
title_full_unstemmed Modeling and Prediction of Thermophysiological Comfort Properties of a Single Layer Fabric System Using Single Sector Sweating Torso
title_short Modeling and Prediction of Thermophysiological Comfort Properties of a Single Layer Fabric System Using Single Sector Sweating Torso
title_sort modeling and prediction of thermophysiological comfort properties of a single layer fabric system using single sector sweating torso
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412942/
https://www.ncbi.nlm.nih.gov/pubmed/36013923
http://dx.doi.org/10.3390/ma15165786
work_keys_str_mv AT gholamrezafarzan modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT suyang modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT liruoyao modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT nadarajaanupamavijaya modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT gathercolerobert modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT liri modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT dolezpatriciai modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT golovinkevin modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT rossirenem modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT annaheimsimon modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso
AT milaniabbass modelingandpredictionofthermophysiologicalcomfortpropertiesofasinglelayerfabricsystemusingsinglesectorsweatingtorso