Cargando…

A Blockchain-Enabled Secure Digital Twin Framework for Early Botnet Detection in IIoT Environment

Resource constraints in the Industrial Internet of Things (IIoT) result in brute-force attacks, transforming them into a botnet to launch Distributed Denial of Service Attacks. The delayed detection of botnet formation presents challenges in controlling the spread of malicious scripts in other devic...

Descripción completa

Detalles Bibliográficos
Autores principales: Salim, Mikail Mohammed, Comivi, Alowonou Kowovi, Nurbek, Tojimurotov, Park, Heejae, Park, Jong Hyuk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412983/
https://www.ncbi.nlm.nih.gov/pubmed/36015892
http://dx.doi.org/10.3390/s22166133
_version_ 1784775626785292288
author Salim, Mikail Mohammed
Comivi, Alowonou Kowovi
Nurbek, Tojimurotov
Park, Heejae
Park, Jong Hyuk
author_facet Salim, Mikail Mohammed
Comivi, Alowonou Kowovi
Nurbek, Tojimurotov
Park, Heejae
Park, Jong Hyuk
author_sort Salim, Mikail Mohammed
collection PubMed
description Resource constraints in the Industrial Internet of Things (IIoT) result in brute-force attacks, transforming them into a botnet to launch Distributed Denial of Service Attacks. The delayed detection of botnet formation presents challenges in controlling the spread of malicious scripts in other devices and increases the probability of a high-volume cyberattack. In this paper, we propose a secure Blockchain-enabled Digital Framework for the early detection of Bot formation in a Smart Factory environment. A Digital Twin (DT) is designed for a group of devices on the edge layer to collect device data and inspect packet headers using Deep Learning for connections with external unique IP addresses with open connections. Data are synchronized between the DT and a Packet Auditor (PA) for detecting corrupt device data transmission. Smart Contracts authenticate the DT and PA, ensuring malicious nodes do not participate in data synchronization. Botnet spread is prevented using DT certificate revocation. A comparative analysis of the proposed framework with existing studies demonstrates that the synchronization of data between the DT and PA ensures data integrity for the Botnet detection model training. Data privacy is maintained by inspecting only Packet headers, thereby not requiring the decryption of encrypted data.
format Online
Article
Text
id pubmed-9412983
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94129832022-08-27 A Blockchain-Enabled Secure Digital Twin Framework for Early Botnet Detection in IIoT Environment Salim, Mikail Mohammed Comivi, Alowonou Kowovi Nurbek, Tojimurotov Park, Heejae Park, Jong Hyuk Sensors (Basel) Article Resource constraints in the Industrial Internet of Things (IIoT) result in brute-force attacks, transforming them into a botnet to launch Distributed Denial of Service Attacks. The delayed detection of botnet formation presents challenges in controlling the spread of malicious scripts in other devices and increases the probability of a high-volume cyberattack. In this paper, we propose a secure Blockchain-enabled Digital Framework for the early detection of Bot formation in a Smart Factory environment. A Digital Twin (DT) is designed for a group of devices on the edge layer to collect device data and inspect packet headers using Deep Learning for connections with external unique IP addresses with open connections. Data are synchronized between the DT and a Packet Auditor (PA) for detecting corrupt device data transmission. Smart Contracts authenticate the DT and PA, ensuring malicious nodes do not participate in data synchronization. Botnet spread is prevented using DT certificate revocation. A comparative analysis of the proposed framework with existing studies demonstrates that the synchronization of data between the DT and PA ensures data integrity for the Botnet detection model training. Data privacy is maintained by inspecting only Packet headers, thereby not requiring the decryption of encrypted data. MDPI 2022-08-16 /pmc/articles/PMC9412983/ /pubmed/36015892 http://dx.doi.org/10.3390/s22166133 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Salim, Mikail Mohammed
Comivi, Alowonou Kowovi
Nurbek, Tojimurotov
Park, Heejae
Park, Jong Hyuk
A Blockchain-Enabled Secure Digital Twin Framework for Early Botnet Detection in IIoT Environment
title A Blockchain-Enabled Secure Digital Twin Framework for Early Botnet Detection in IIoT Environment
title_full A Blockchain-Enabled Secure Digital Twin Framework for Early Botnet Detection in IIoT Environment
title_fullStr A Blockchain-Enabled Secure Digital Twin Framework for Early Botnet Detection in IIoT Environment
title_full_unstemmed A Blockchain-Enabled Secure Digital Twin Framework for Early Botnet Detection in IIoT Environment
title_short A Blockchain-Enabled Secure Digital Twin Framework for Early Botnet Detection in IIoT Environment
title_sort blockchain-enabled secure digital twin framework for early botnet detection in iiot environment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412983/
https://www.ncbi.nlm.nih.gov/pubmed/36015892
http://dx.doi.org/10.3390/s22166133
work_keys_str_mv AT salimmikailmohammed ablockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment
AT comivialowonoukowovi ablockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment
AT nurbektojimurotov ablockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment
AT parkheejae ablockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment
AT parkjonghyuk ablockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment
AT salimmikailmohammed blockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment
AT comivialowonoukowovi blockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment
AT nurbektojimurotov blockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment
AT parkheejae blockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment
AT parkjonghyuk blockchainenabledsecuredigitaltwinframeworkforearlybotnetdetectioniniiotenvironment