Cargando…
Hyper-Parameter Optimization of Stacked Asymmetric Auto-Encoders for Automatic Personality Traits Perception
In this work, a method for automatic hyper-parameter tuning of the stacked asymmetric auto-encoder is proposed. In previous work, the deep learning ability to extract personality perception from speech was shown, but hyper-parameter tuning was attained by trial-and-error, which is time-consuming and...
Autores principales: | Jalaeian Zaferani, Effat, Teshnehlab, Mohammad, Khodadadian, Amirreza, Heitzinger, Clemens, Vali, Mansour, Noii, Nima, Wick, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413006/ https://www.ncbi.nlm.nih.gov/pubmed/36015967 http://dx.doi.org/10.3390/s22166206 |
Ejemplares similares
-
A Bayesian estimation method for variational phase-field fracture problems
por: Khodadadian, Amirreza, et al.
Publicado: (2020) -
Rational Design of Field-Effect Sensors Using Partial Differential Equations, Bayesian Inversion, and Artificial Neural Networks
por: Khodadadian, Amirreza, et al.
Publicado: (2022) -
Design a robust sliding mode controller based on the state and parameter estimation for the nonlinear epidemiological model of Covid-19
por: Badfar, Ehsan, et al.
Publicado: (2021) -
A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation
por: Khodadadian, Amirreza, et al.
Publicado: (2019) -
Stacked Sparse Auto-Encoders (SSAE) Based Electronic Nose for Chinese Liquors Classification
por: Zhao, Wei, et al.
Publicado: (2017)