Cargando…
Renieramycin T Inhibits Melanoma B16F10 Cell Metastasis and Invasion via Regulating Nrf2 and STAT3 Signaling Pathways
As one of marine tetrahydroisoquinoline alkaloids, renieramycin T plays a significant role in inhibiting tumor metastasis and invasion. However, the effect of renieramycin T on inflammation-related tumor metastasis and invasion is still unknown, and its mechanisms remain unclear. Here we established...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413012/ https://www.ncbi.nlm.nih.gov/pubmed/36014573 http://dx.doi.org/10.3390/molecules27165337 |
Sumario: | As one of marine tetrahydroisoquinoline alkaloids, renieramycin T plays a significant role in inhibiting tumor metastasis and invasion. However, the effect of renieramycin T on inflammation-related tumor metastasis and invasion is still unknown, and its mechanisms remain unclear. Here we established an inflammation-related tumor model by using the supernatant of RAW264.7 cells to simulate B16F10 mouse melanoma cells. The results indicate that renieramycin T suppressed RAW264.7 cell supernatant-reduced B16F10 cell adhesion to a fibronectin-coated substrate, migration, and invasion through the matrigel in a concentration-dependent manner. Moreover, Western blot results reveal that renieramycin T attenuated the phosphorylation of STAT3 and down-regulated the expression of Nrf2. Together, the above findings suggest a model of renieramycin T in suppressing B16F10 cancer cell migration and invasion. It may serve as a promising drug for the treatment of cancer metastasis. |
---|