Cargando…
Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations
Fouling and mud-pumping problems in ballasted track significantly degrade serviceability and jeopardize train operational safety. The phenomenological approaches for post hoc forensic investigation and remedies of mud pumps have relatively been well studied, but there still lacks studies on inherent...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413036/ https://www.ncbi.nlm.nih.gov/pubmed/36015938 http://dx.doi.org/10.3390/s22166177 |
_version_ | 1784775637798486016 |
---|---|
author | Wang, Meng Xiao, Yuanjie Li, Wenqi Zhao, Hongjun Hua, Wenjun Jiang, Yu |
author_facet | Wang, Meng Xiao, Yuanjie Li, Wenqi Zhao, Hongjun Hua, Wenjun Jiang, Yu |
author_sort | Wang, Meng |
collection | PubMed |
description | Fouling and mud-pumping problems in ballasted track significantly degrade serviceability and jeopardize train operational safety. The phenomenological approaches for post hoc forensic investigation and remedies of mud pumps have relatively been well studied, but there still lacks studies on inherent mechanisms and ex ante approaches for early-age detection of mud pumps. This paper was aimed to exploring the feasibility of using particle acceleration responses to diagnose and identify early-age mud-pumping risks in real-world field applications. The innovative wireless sensors with 3D-printed shells resembling real shape of ballast particles were instrumented in the problematic railway section to monitor ballast particle movement prior to, during, and after maintenance operations, respectively. The real-time particle-scale acceleration data of ballast bed under both degraded and maintenance-restored clean conditions were recorded. The time histories, power spectra, and marginal spectra of 3D acceleration were comparatively analyzed. The results showed the 3D acceleration of ballast particles underneath rail-supporting tie plates displayed relatively clear periodicity of about 0.8 s with adjacent bogies regarded as a loading unit. The tamping operation was effective for compacting ballast bed laterally and improving the lateral interlocking of ballast particles, whereas the stabilizing operation was effective mainly in the lateral direction and for ballast particles underneath the sleepers. The mud pumps caused intensive particle-scale acceleration, and ballast particles underneath the sleepers were affected more severely than those in between adjacent sleepers. The ballast particles directly underneath tie plates exhibit dramatic acceleration variations due to maintenance operations as compared to those in other positions studied; hence, it seems promising to use particle-scale acceleration underneath tie plates as readily-implementable indicators for smart in-service track health monitoring. |
format | Online Article Text |
id | pubmed-9413036 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94130362022-08-27 Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations Wang, Meng Xiao, Yuanjie Li, Wenqi Zhao, Hongjun Hua, Wenjun Jiang, Yu Sensors (Basel) Article Fouling and mud-pumping problems in ballasted track significantly degrade serviceability and jeopardize train operational safety. The phenomenological approaches for post hoc forensic investigation and remedies of mud pumps have relatively been well studied, but there still lacks studies on inherent mechanisms and ex ante approaches for early-age detection of mud pumps. This paper was aimed to exploring the feasibility of using particle acceleration responses to diagnose and identify early-age mud-pumping risks in real-world field applications. The innovative wireless sensors with 3D-printed shells resembling real shape of ballast particles were instrumented in the problematic railway section to monitor ballast particle movement prior to, during, and after maintenance operations, respectively. The real-time particle-scale acceleration data of ballast bed under both degraded and maintenance-restored clean conditions were recorded. The time histories, power spectra, and marginal spectra of 3D acceleration were comparatively analyzed. The results showed the 3D acceleration of ballast particles underneath rail-supporting tie plates displayed relatively clear periodicity of about 0.8 s with adjacent bogies regarded as a loading unit. The tamping operation was effective for compacting ballast bed laterally and improving the lateral interlocking of ballast particles, whereas the stabilizing operation was effective mainly in the lateral direction and for ballast particles underneath the sleepers. The mud pumps caused intensive particle-scale acceleration, and ballast particles underneath the sleepers were affected more severely than those in between adjacent sleepers. The ballast particles directly underneath tie plates exhibit dramatic acceleration variations due to maintenance operations as compared to those in other positions studied; hence, it seems promising to use particle-scale acceleration underneath tie plates as readily-implementable indicators for smart in-service track health monitoring. MDPI 2022-08-18 /pmc/articles/PMC9413036/ /pubmed/36015938 http://dx.doi.org/10.3390/s22166177 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Meng Xiao, Yuanjie Li, Wenqi Zhao, Hongjun Hua, Wenjun Jiang, Yu Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations |
title | Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations |
title_full | Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations |
title_fullStr | Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations |
title_full_unstemmed | Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations |
title_short | Characterizing Particle-Scale Acceleration of Mud-Pumping Ballast Bed of Heavy-Haul Railway Subjected to Maintenance Operations |
title_sort | characterizing particle-scale acceleration of mud-pumping ballast bed of heavy-haul railway subjected to maintenance operations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413036/ https://www.ncbi.nlm.nih.gov/pubmed/36015938 http://dx.doi.org/10.3390/s22166177 |
work_keys_str_mv | AT wangmeng characterizingparticlescaleaccelerationofmudpumpingballastbedofheavyhaulrailwaysubjectedtomaintenanceoperations AT xiaoyuanjie characterizingparticlescaleaccelerationofmudpumpingballastbedofheavyhaulrailwaysubjectedtomaintenanceoperations AT liwenqi characterizingparticlescaleaccelerationofmudpumpingballastbedofheavyhaulrailwaysubjectedtomaintenanceoperations AT zhaohongjun characterizingparticlescaleaccelerationofmudpumpingballastbedofheavyhaulrailwaysubjectedtomaintenanceoperations AT huawenjun characterizingparticlescaleaccelerationofmudpumpingballastbedofheavyhaulrailwaysubjectedtomaintenanceoperations AT jiangyu characterizingparticlescaleaccelerationofmudpumpingballastbedofheavyhaulrailwaysubjectedtomaintenanceoperations |