Cargando…
Cross-Domain Active Learning for Electronic Nose Drift Compensation
The problem of drift in the electronic nose (E-nose) is an important factor in the distortion of data. The existing active learning methods do not take into account the misalignment of the data feature distribution between different domains due to drift when selecting samples. For this, we proposed...
Autores principales: | Sun, Fangyu, Sun, Ruihong, Yan, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413090/ https://www.ncbi.nlm.nih.gov/pubmed/36014182 http://dx.doi.org/10.3390/mi13081260 |
Ejemplares similares
-
Active Learning on Dynamic Clustering for Drift Compensation in an Electronic Nose System
por: Liu, Tao, et al.
Publicado: (2019) -
Wasserstein Distance Learns Domain Invariant Feature Representations for Drift Compensation of E-Nose
por: Tao, Yang, et al.
Publicado: (2019) -
Domain Correction Based on Kernel Transformation for Drift Compensation in the E-Nose System
por: Tao, Yang, et al.
Publicado: (2018) -
Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine
por: Ma, Zhiyuan, et al.
Publicado: (2018) -
Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose
por: Liu, Tao, et al.
Publicado: (2018)