Cargando…
Polymyxin B in Combination with Glycerol Monolaurate Exerts Synergistic Killing against Gram-Negative Pathogens
The rapid emergence and spread of multidrug-resistant (MDR) bacterial pathogens pose a serious danger to worldwide human health, and resistance to last-resort drugs, such as polymyxins, is being increasingly detected in MDR Gram-negative pathogens. There is an urgent need to find and optimize combin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413120/ https://www.ncbi.nlm.nih.gov/pubmed/36014995 http://dx.doi.org/10.3390/pathogens11080874 |
Sumario: | The rapid emergence and spread of multidrug-resistant (MDR) bacterial pathogens pose a serious danger to worldwide human health, and resistance to last-resort drugs, such as polymyxins, is being increasingly detected in MDR Gram-negative pathogens. There is an urgent need to find and optimize combination therapies as an alternative therapeutic strategy, with a dry pipeline in novel antibiotic research and development. We found a monoester formed from the combination of lauric acid and glycerol, glycerol monolaurate (GML), possessing prominent antibacterial and anti-inflammatory activity. However, it is still unclear whether GML in combination could increase antimicrobial activity. Here, we reported that polymyxin B (PMNB) combined with GML exhibited a synergistic antimicrobial impact on Gram-negative strains in vitro, including clinical MDR isolates. This synergistic antimicrobial activity correlated with the destruction of bacterial cell structures, eradication of preformed biofilms, and increased reactive oxygen species (ROS) accumulation. We also showed that PMNB synergized with GML effectively eliminated pathogens from bacterial pneumonia caused by Klebsiella pneumoniae to rescue mice. Our research demonstrated that the PMNB and GML combination induced synergistic antimicrobial activity for Gram-negative pathogens in vitro and in vivo. These findings are of great importance for treating bacterial infections and managing the spread of infectious diseases. |
---|