Cargando…
Whitening Technique Based on Gram–Schmidt Orthogonalization for Motor Imagery Classification of Brain–Computer Interface Applications
A novel whitening technique for motor imagery (MI) classification is proposed to reduce the accuracy variance of brain–computer interfaces (BCIs). This method is intended to improve the electroencephalogram eigenface analysis performance for the MI classification of BCIs. In BCI classification, the...
Autores principales: | Choi, Hojong, Park, Junghun, Yang, Yeon-Mo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413233/ https://www.ncbi.nlm.nih.gov/pubmed/36015803 http://dx.doi.org/10.3390/s22166042 |
Ejemplares similares
-
Distributed Gram-Schmidt orthogonalization with simultaneous elements refinement
por: Slučiak, Ondrej, et al.
Publicado: (2016) -
A Novel Quick-Response Eigenface Analysis Scheme for Brain–Computer Interfaces
por: Choi, Hojong, et al.
Publicado: (2022) -
Overcoming Catastrophic Interference in Connectionist Networks Using Gram-Schmidt Orthogonalization
por: Srivastava, Vipin, et al.
Publicado: (2014) -
Variational Pansharpening for Hyperspectral Imagery Constrained by Spectral Shape and Gram–Schmidt Transformation †
por: Huang, Zehua, et al.
Publicado: (2018) -
Electroencephalography-Based Brain–Computer Interface Motor Imagery Classification
por: Mohammadi, Ehsan, et al.
Publicado: (2021)