Cargando…
An automated approach for predicting glioma grade and survival of LGG patients using CNN and radiomics
OBJECTIVES: To develop and validate an efficient and automatically computational approach for stratifying glioma grades and predicting survival of lower-grade glioma (LGG) patients using an integration of state-of-the-art convolutional neural network (CNN) and radiomics. METHOD: This retrospective s...
Autores principales: | Xu, Chenan, Peng, Yuanyuan, Zhu, Weifang, Chen, Zhongyue, Li, Jianrui, Tan, Wenhao, Zhang, Zhiqiang, Chen, Xinjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413530/ https://www.ncbi.nlm.nih.gov/pubmed/36033433 http://dx.doi.org/10.3389/fonc.2022.969907 |
Ejemplares similares
-
Construction of a prognostic immune signature for lower grade glioma that can be recognized by MRI radiomics features to predict survival in LGG patients
por: Li, Zi-zhuo, et al.
Publicado: (2021) -
Identification of Gender-Specific Molecular Differences in Glioblastoma (GBM) and Low-Grade Glioma (LGG) by the Analysis of Large Transcriptomic and Epigenomic Datasets
por: Khan, Md Tipu, et al.
Publicado: (2021) -
The combination of radiomics features and VASARI standard to predict glioma grade
por: You, Wei, et al.
Publicado: (2023) -
LGG-57. SIGNALLING MECHANISMS IN PAEDIATRIC LOW-GRADE GLIOMA
por: Patel, Ankit, et al.
Publicado: (2020) -
Radiomics Features Predict CIC Mutation Status in Lower Grade Glioma
por: Zhang, Luyuan, et al.
Publicado: (2020)