Cargando…

Conducting Composite Material Based on Chitosan and Single-Wall Carbon Nanotubes for Cellular Technologies

Biocompatible electrically conducting chitosan-based films filled with single-wall carbon nanotubes were obtained. Atomic force microscopic studies of the free surface topography revealed a change in the morphology of chitosan films filled with single-wall carbon nanotubes. Introducing 0.5 wt.% of s...

Descripción completa

Detalles Bibliográficos
Autores principales: Kodolova-Chukhontseva, Vera Vladimirovna, Shishov, Mikhail Alexandrovich, Kolbe, Konstantin Andreevich, Smirnova, Natalia Vladimirovna, Dobrovol’skaya, Irina Petrovna, Dresvyanina, Elena Nikolaevna, Bystrov, Sergei Gennadievich, Terebova, Nadezda Semenovna, Kamalov, Almaz Maratovich, Bursian, Anna Ericovna, Ivan’kova, Elena Mikhailovna, Yudin, Vladimir Evgenievich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413541/
https://www.ncbi.nlm.nih.gov/pubmed/36015544
http://dx.doi.org/10.3390/polym14163287
_version_ 1784775774583128064
author Kodolova-Chukhontseva, Vera Vladimirovna
Shishov, Mikhail Alexandrovich
Kolbe, Konstantin Andreevich
Smirnova, Natalia Vladimirovna
Dobrovol’skaya, Irina Petrovna
Dresvyanina, Elena Nikolaevna
Bystrov, Sergei Gennadievich
Terebova, Nadezda Semenovna
Kamalov, Almaz Maratovich
Bursian, Anna Ericovna
Ivan’kova, Elena Mikhailovna
Yudin, Vladimir Evgenievich
author_facet Kodolova-Chukhontseva, Vera Vladimirovna
Shishov, Mikhail Alexandrovich
Kolbe, Konstantin Andreevich
Smirnova, Natalia Vladimirovna
Dobrovol’skaya, Irina Petrovna
Dresvyanina, Elena Nikolaevna
Bystrov, Sergei Gennadievich
Terebova, Nadezda Semenovna
Kamalov, Almaz Maratovich
Bursian, Anna Ericovna
Ivan’kova, Elena Mikhailovna
Yudin, Vladimir Evgenievich
author_sort Kodolova-Chukhontseva, Vera Vladimirovna
collection PubMed
description Biocompatible electrically conducting chitosan-based films filled with single-wall carbon nanotubes were obtained. Atomic force microscopic studies of the free surface topography revealed a change in the morphology of chitosan films filled with single-wall carbon nanotubes. Introducing 0.5 wt.% of single-wall carbon nanotubes into chitosan results in an increase in tensile strength of the films (up to ~180 MPa); the tensile strain values also rise up to ~60%. It was demonstrated that chitosan films containing 0.1–3.0 wt.% of single-wall carbon nanotubes have higher conductivity (10 S/m) than pure chitosan films (10(−11) S/m). The investigation of electrical stimulation of human dermal fibroblasts on chitosan/single-wall carbon nanotubes film scaffolds showed that the biological effect of cell electrical stimulation depends on the content of single-walled carbon nanotubes in the chitosan matrix.
format Online
Article
Text
id pubmed-9413541
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94135412022-08-27 Conducting Composite Material Based on Chitosan and Single-Wall Carbon Nanotubes for Cellular Technologies Kodolova-Chukhontseva, Vera Vladimirovna Shishov, Mikhail Alexandrovich Kolbe, Konstantin Andreevich Smirnova, Natalia Vladimirovna Dobrovol’skaya, Irina Petrovna Dresvyanina, Elena Nikolaevna Bystrov, Sergei Gennadievich Terebova, Nadezda Semenovna Kamalov, Almaz Maratovich Bursian, Anna Ericovna Ivan’kova, Elena Mikhailovna Yudin, Vladimir Evgenievich Polymers (Basel) Article Biocompatible electrically conducting chitosan-based films filled with single-wall carbon nanotubes were obtained. Atomic force microscopic studies of the free surface topography revealed a change in the morphology of chitosan films filled with single-wall carbon nanotubes. Introducing 0.5 wt.% of single-wall carbon nanotubes into chitosan results in an increase in tensile strength of the films (up to ~180 MPa); the tensile strain values also rise up to ~60%. It was demonstrated that chitosan films containing 0.1–3.0 wt.% of single-wall carbon nanotubes have higher conductivity (10 S/m) than pure chitosan films (10(−11) S/m). The investigation of electrical stimulation of human dermal fibroblasts on chitosan/single-wall carbon nanotubes film scaffolds showed that the biological effect of cell electrical stimulation depends on the content of single-walled carbon nanotubes in the chitosan matrix. MDPI 2022-08-12 /pmc/articles/PMC9413541/ /pubmed/36015544 http://dx.doi.org/10.3390/polym14163287 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kodolova-Chukhontseva, Vera Vladimirovna
Shishov, Mikhail Alexandrovich
Kolbe, Konstantin Andreevich
Smirnova, Natalia Vladimirovna
Dobrovol’skaya, Irina Petrovna
Dresvyanina, Elena Nikolaevna
Bystrov, Sergei Gennadievich
Terebova, Nadezda Semenovna
Kamalov, Almaz Maratovich
Bursian, Anna Ericovna
Ivan’kova, Elena Mikhailovna
Yudin, Vladimir Evgenievich
Conducting Composite Material Based on Chitosan and Single-Wall Carbon Nanotubes for Cellular Technologies
title Conducting Composite Material Based on Chitosan and Single-Wall Carbon Nanotubes for Cellular Technologies
title_full Conducting Composite Material Based on Chitosan and Single-Wall Carbon Nanotubes for Cellular Technologies
title_fullStr Conducting Composite Material Based on Chitosan and Single-Wall Carbon Nanotubes for Cellular Technologies
title_full_unstemmed Conducting Composite Material Based on Chitosan and Single-Wall Carbon Nanotubes for Cellular Technologies
title_short Conducting Composite Material Based on Chitosan and Single-Wall Carbon Nanotubes for Cellular Technologies
title_sort conducting composite material based on chitosan and single-wall carbon nanotubes for cellular technologies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413541/
https://www.ncbi.nlm.nih.gov/pubmed/36015544
http://dx.doi.org/10.3390/polym14163287
work_keys_str_mv AT kodolovachukhontsevaveravladimirovna conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT shishovmikhailalexandrovich conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT kolbekonstantinandreevich conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT smirnovanataliavladimirovna conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT dobrovolskayairinapetrovna conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT dresvyaninaelenanikolaevna conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT bystrovsergeigennadievich conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT terebovanadezdasemenovna conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT kamalovalmazmaratovich conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT bursianannaericovna conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT ivankovaelenamikhailovna conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies
AT yudinvladimirevgenievich conductingcompositematerialbasedonchitosanandsinglewallcarbonnanotubesforcellulartechnologies