Cargando…
Focusing Characteristics and Widefield Imaging Performance of the Silicon Metalens in the Visible Range
Conventional optical high numerical aperture lenses are essential for high-resolution imaging, but bulky and expensive. In comparison, metalens-based optical components are the subjects of intensive investigation for their flexible manipulation of light. Methods of detecting and characterizing focal...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413690/ https://www.ncbi.nlm.nih.gov/pubmed/36014105 http://dx.doi.org/10.3390/mi13081183 |
Sumario: | Conventional optical high numerical aperture lenses are essential for high-resolution imaging, but bulky and expensive. In comparison, metalens-based optical components are the subjects of intensive investigation for their flexible manipulation of light. Methods of detecting and characterizing focal spots and scanning imaging produced by metalenses are well established. However, widefield imaging by metalenses is experimentally challenging. This study demonstrates the design and realization of silicon-based metalenses with numerical apertures of 0.447 and 0.204 in the broadband spectrum of 580–780 nm for microscopic widefield imaging. The optimized aspect ratio of the single nanorod is 5.1:1, which reduces the fabrication difficulty compared to other, more complicated designs and fabrication. Furthermore, we successfully demonstrate widefield imaging by the designed metalens and compare the simulated and the experimentally extracted modulation transfer function curves of the metalens. |
---|