Cargando…
Modification of DSSC Based on Polymer Composite Gel Electrolyte with Copper Oxide Nanochain by Shape Effect
Solvent evaporation and leakage of liquid electrolytes that restrict the practicality of dye-sensitized solar cells (DSSCs) motivate the quest for the development of stable and ionic conductive electrolyte. Gel polymer electrolyte (GPE) fits the criteria, but it still suffers from low efficiency due...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413727/ https://www.ncbi.nlm.nih.gov/pubmed/36015683 http://dx.doi.org/10.3390/polym14163426 |
_version_ | 1784775820345081856 |
---|---|
author | Farhana, Nur Khuzaimah Omar, Fatin Saiha Mohamad Saidi, Norshahirah Ling, Goh Zhi Bashir, Shahid Subramaniam, Ramesh Kasi, Ramesh Iqbal, Javed Wageh, Swelm Algarni, Hamed Al-Sehemi, Abdullah G. |
author_facet | Farhana, Nur Khuzaimah Omar, Fatin Saiha Mohamad Saidi, Norshahirah Ling, Goh Zhi Bashir, Shahid Subramaniam, Ramesh Kasi, Ramesh Iqbal, Javed Wageh, Swelm Algarni, Hamed Al-Sehemi, Abdullah G. |
author_sort | Farhana, Nur Khuzaimah |
collection | PubMed |
description | Solvent evaporation and leakage of liquid electrolytes that restrict the practicality of dye-sensitized solar cells (DSSCs) motivate the quest for the development of stable and ionic conductive electrolyte. Gel polymer electrolyte (GPE) fits the criteria, but it still suffers from low efficiency due to insufficient segmental motion within the electrolytes. Therefore, incorporating metal oxide nanofiller is one of the approaches to enhance the performance of electrolytes due to the presence of cross-linking centers that can be coordinated with the polymer segments. In this research, polymer composite gel electrolytes (PCGEs) employing poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (P(VB-co-VA-co-VAc)) terpolymer as host polymer, tetrapropylammonium iodide (TPAI) as dopant salt, and copper oxide (CuO) nanoparticles as the nanofillers were produced. The CuO nanofillers were synthesized by sonochemical method and subsequently calcined at different temperatures (i.e., 200, 350, and 500 °C), denoted as CuO-200, CuO-350, and CuO-500, respectively. All CuO nanoparticles have different shapes and sizes that are connected in a chain which impact the amorphous phase and the roughness of the surface, proven by the structural and the morphological analyses. It was found that the PCGE consisting of CuO-350 exhibited the highest ionic conductivity of 2.54 mS cm(−1) and apparent diffusion coefficient of triiodide of 1.537 [Formula: see text] 10(−4) cm(2) s(−1). The enhancement in the electrochemical performance of the PCGEs is correlated with the change in shape (rod to sphere) and size of CuO particles which disrupted the structural order of the polymer chain, facilitating the redox couple transportation. Additionally, a DSSC was fabricated and achieved the highest power conversion efficiency of 7.05% with J(SC) of 22.1 mA cm(−2), V(OC) of 0.61 V, and FF of 52.4%. |
format | Online Article Text |
id | pubmed-9413727 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94137272022-08-27 Modification of DSSC Based on Polymer Composite Gel Electrolyte with Copper Oxide Nanochain by Shape Effect Farhana, Nur Khuzaimah Omar, Fatin Saiha Mohamad Saidi, Norshahirah Ling, Goh Zhi Bashir, Shahid Subramaniam, Ramesh Kasi, Ramesh Iqbal, Javed Wageh, Swelm Algarni, Hamed Al-Sehemi, Abdullah G. Polymers (Basel) Article Solvent evaporation and leakage of liquid electrolytes that restrict the practicality of dye-sensitized solar cells (DSSCs) motivate the quest for the development of stable and ionic conductive electrolyte. Gel polymer electrolyte (GPE) fits the criteria, but it still suffers from low efficiency due to insufficient segmental motion within the electrolytes. Therefore, incorporating metal oxide nanofiller is one of the approaches to enhance the performance of electrolytes due to the presence of cross-linking centers that can be coordinated with the polymer segments. In this research, polymer composite gel electrolytes (PCGEs) employing poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (P(VB-co-VA-co-VAc)) terpolymer as host polymer, tetrapropylammonium iodide (TPAI) as dopant salt, and copper oxide (CuO) nanoparticles as the nanofillers were produced. The CuO nanofillers were synthesized by sonochemical method and subsequently calcined at different temperatures (i.e., 200, 350, and 500 °C), denoted as CuO-200, CuO-350, and CuO-500, respectively. All CuO nanoparticles have different shapes and sizes that are connected in a chain which impact the amorphous phase and the roughness of the surface, proven by the structural and the morphological analyses. It was found that the PCGE consisting of CuO-350 exhibited the highest ionic conductivity of 2.54 mS cm(−1) and apparent diffusion coefficient of triiodide of 1.537 [Formula: see text] 10(−4) cm(2) s(−1). The enhancement in the electrochemical performance of the PCGEs is correlated with the change in shape (rod to sphere) and size of CuO particles which disrupted the structural order of the polymer chain, facilitating the redox couple transportation. Additionally, a DSSC was fabricated and achieved the highest power conversion efficiency of 7.05% with J(SC) of 22.1 mA cm(−2), V(OC) of 0.61 V, and FF of 52.4%. MDPI 2022-08-22 /pmc/articles/PMC9413727/ /pubmed/36015683 http://dx.doi.org/10.3390/polym14163426 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Farhana, Nur Khuzaimah Omar, Fatin Saiha Mohamad Saidi, Norshahirah Ling, Goh Zhi Bashir, Shahid Subramaniam, Ramesh Kasi, Ramesh Iqbal, Javed Wageh, Swelm Algarni, Hamed Al-Sehemi, Abdullah G. Modification of DSSC Based on Polymer Composite Gel Electrolyte with Copper Oxide Nanochain by Shape Effect |
title | Modification of DSSC Based on Polymer Composite Gel Electrolyte with Copper Oxide Nanochain by Shape Effect |
title_full | Modification of DSSC Based on Polymer Composite Gel Electrolyte with Copper Oxide Nanochain by Shape Effect |
title_fullStr | Modification of DSSC Based on Polymer Composite Gel Electrolyte with Copper Oxide Nanochain by Shape Effect |
title_full_unstemmed | Modification of DSSC Based on Polymer Composite Gel Electrolyte with Copper Oxide Nanochain by Shape Effect |
title_short | Modification of DSSC Based on Polymer Composite Gel Electrolyte with Copper Oxide Nanochain by Shape Effect |
title_sort | modification of dssc based on polymer composite gel electrolyte with copper oxide nanochain by shape effect |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413727/ https://www.ncbi.nlm.nih.gov/pubmed/36015683 http://dx.doi.org/10.3390/polym14163426 |
work_keys_str_mv | AT farhananurkhuzaimah modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT omarfatinsaiha modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT mohamadsaidinorshahirah modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT linggohzhi modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT bashirshahid modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT subramaniamramesh modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT kasiramesh modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT iqbaljaved modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT wagehswelm modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT algarnihamed modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect AT alsehemiabdullahg modificationofdsscbasedonpolymercompositegelelectrolytewithcopperoxidenanochainbyshapeeffect |