Cargando…
ULMR: An Unsupervised Learning Framework for Mismatch Removal
Due to radiometric and geometric distortions between images, mismatches are inevitable. Thus, a mismatch removal process is required for improving matching accuracy. Although deep learning methods have been proved to outperform handcraft methods in specific scenarios, including image identification...
Autores principales: | Deng, Cailong, Chen, Shiyu, Zhang, Yong, Zhang, Qixin, Chen, Feiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413738/ https://www.ncbi.nlm.nih.gov/pubmed/36015871 http://dx.doi.org/10.3390/s22166110 |
Ejemplares similares
-
An Unsupervised Transfer Learning Framework for Visible-Thermal Pedestrian Detection
por: Lyu, Chengjin, et al.
Publicado: (2022) -
An Unsupervised Method for Artefact Removal in EEG Signals
por: Mur, Angel, et al.
Publicado: (2019) -
Prediction of Potential miRNA–Disease Associations Through a Novel Unsupervised Deep Learning Framework with Variational Autoencoder
por: Zhang, Li, et al.
Publicado: (2019) -
Robust Muscle Activity Onset Detection Using an Unsupervised Electromyogram Learning Framework
por: Liu, Jie, et al.
Publicado: (2015) -
Seeding and Harvest: A Framework for Unsupervised Feature Selection Problems
por: Chen, Gang, et al.
Publicado: (2012)