Cargando…
Microstructural Study of CrNiCoFeMn High Entropy Alloy Obtained by Selective Laser Melting
The high entropy alloy (HEA) of equiatomic composition CrNiFeCoMn and with FCC crystal structure was additively manufactured in a selective laser melting (SLM) process starting from mechanically alloyed powders. The as-produced alloy shows fine nitride and σ phase precipitates, which are Cr-rich and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414008/ https://www.ncbi.nlm.nih.gov/pubmed/36013680 http://dx.doi.org/10.3390/ma15165544 |
Sumario: | The high entropy alloy (HEA) of equiatomic composition CrNiFeCoMn and with FCC crystal structure was additively manufactured in a selective laser melting (SLM) process starting from mechanically alloyed powders. The as-produced alloy shows fine nitride and σ phase precipitates, which are Cr-rich and stable up to about 900 K. The precipitates increase in number and dimensions after long-period annealing at 900–1300 K, with a change in the HEA mechanical properties. Higher aging temperatures in the furnace, above 1300 K, turn the alloy into a single FCC structure, with the disappearance of the nitride and σ phase precipitates inside the grains and at the grain boundaries, but still with the presence of a finer Cr-rich nitride precipitation phase. These results suggest that the as-produced HEA is a supersaturated solid solution at low and intermediate temperature with nitrides and σ nanostructures. |
---|