Cargando…
Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images
Tumor segmentation is a fundamental task in histopathological image analysis. Creating accurate pixel-wise annotations for such segmentation tasks in a fully-supervised training framework requires significant effort. To reduce the burden of manual annotation, we propose a novel weakly supervised seg...
Autores principales: | Liu, Yiqing, He, Qiming, Duan, Hufei, Shi, Huijuan, Han, Anjia, He, Yonghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414209/ https://www.ncbi.nlm.nih.gov/pubmed/36015814 http://dx.doi.org/10.3390/s22166053 |
Ejemplares similares
-
An accurate prediction of the origin for bone metastatic cancer using deep learning on digital pathological images
por: Zhu, Lianghui, et al.
Publicado: (2022) -
Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net
por: Nofallah, Shima, et al.
Publicado: (2022) -
Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations
por: Pagano, Lucas, et al.
Publicado: (2023) -
Gabor Dictionary of Sparse Image Patches Selected in Prior Boundaries for 3D Liver Segmentation in CT Images
por: Wang, Xuehu, et al.
Publicado: (2021) -
Multimodal MRI Brain Tumor Image Segmentation Using Sparse Subspace Clustering Algorithm
por: Liu, Li, et al.
Publicado: (2020)