Cargando…
A Fast Weighted Fuzzy C-Medoids Clustering for Time Series Data Based on P-Splines
The rapid growth of digital information has produced massive amounts of time series data on rich features and most time series data are noisy and contain some outlier samples, which leads to a decline in the clustering effect. To efficiently discover the hidden statistical information about the data...
Autores principales: | Xu, Jiucheng, Hou, Qinchen, Qu, Kanglin, Sun, Yuanhao, Meng, Xiangru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414275/ https://www.ncbi.nlm.nih.gov/pubmed/36015930 http://dx.doi.org/10.3390/s22166163 |
Ejemplares similares
-
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance
por: Liu, Yongli, et al.
Publicado: (2018) -
Spatial robust fuzzy clustering of COVID 19 time series based on B-splines
por: D’Urso, Pierpaolo, et al.
Publicado: (2022) -
Clustering and Characterization of the Lactation Curves of Dairy Cows Using K-Medoids Clustering Algorithm
por: Lee, Mingyung, et al.
Publicado: (2020) -
A new fast method for inferring multiple consensus trees using k-medoids
por: Tahiri, Nadia, et al.
Publicado: (2018) -
Clustering Time-Series Gene Expression Data Using Smoothing Spline Derivatives
por: Déjean, S, et al.
Publicado: (2007)