Cargando…
RIS-Assisted Multi-Antenna AmBC Signal Detection Using Deep Reinforcement Learning
Signal detection is one of the most critical and challenging issues in ambient backscatter communication (AmBC) systems. In this paper, a multi-antenna AmBC signal detection method is proposed based on reconfigurable intelligent surface (RIS) and deep reinforcement learning. Firstly, an efficient mu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414307/ https://www.ncbi.nlm.nih.gov/pubmed/36015896 http://dx.doi.org/10.3390/s22166137 |
Sumario: | Signal detection is one of the most critical and challenging issues in ambient backscatter communication (AmBC) systems. In this paper, a multi-antenna AmBC signal detection method is proposed based on reconfigurable intelligent surface (RIS) and deep reinforcement learning. Firstly, an efficient multi-antenna AmBC system is developed based on RIS, which can achieve information transmission and energy collection simultaneously. Secondly, a smart twin delayed deep deterministic (TD3) AmBC signal detection method is presented, based on deep reinforcement learning. Extensive quantitative and qualitative experiments are performed, which show that the proposed method is more compelling than the outstanding comparison methods. |
---|