Cargando…
ECTFE Membrane Fabrication Using Green Binary Diluents TEGDA/TOTM and Its Performance in Membrane Condenser
Poly(ethylene-chlorotrifluoroethylene) (ECTFE) membrane is a hydrophobic membrane material that can be used to recover water from high-humidity gases in the membrane condenser (MC) process. In this study, ECTFE membranes were prepared by the thermally induced phase separation (TIPS) method using the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414311/ https://www.ncbi.nlm.nih.gov/pubmed/36005672 http://dx.doi.org/10.3390/membranes12080757 |
_version_ | 1784775957615214592 |
---|---|
author | Yu, Songhong Huang, Yu Zhang, Lixun Wang, Qian Wang, Zhaohui Cui, Zhaoliang Drioli, Enrico |
author_facet | Yu, Songhong Huang, Yu Zhang, Lixun Wang, Qian Wang, Zhaohui Cui, Zhaoliang Drioli, Enrico |
author_sort | Yu, Songhong |
collection | PubMed |
description | Poly(ethylene-chlorotrifluoroethylene) (ECTFE) membrane is a hydrophobic membrane material that can be used to recover water from high-humidity gases in the membrane condenser (MC) process. In this study, ECTFE membranes were prepared by the thermally induced phase separation (TIPS) method using the green binary diluents triglyceride diacetate (TEGDA) and trioctyl trimellitate (TOTM). Thermodynamic phase diagrams of the ECTFE/TEGDA: TOTM system were made. The effects of the diluent composition and cooling rate on the structure and properties of the ECTFE membranes were investigated by characterizing the SEM, contact angle, mechanical properties, pore size and porosity. The results showed that ECTFE membranes with cellular structure were successfully prepared and exhibit good mechanical properties. Moreover, increasing the TOTM content in the binary diluents and decreasing the cooling rate could effectively improve the mean pore size of the ECTFE membranes, but the increase in TOTM content reduced the mechanical properties. During the MC process, the water recovery performance of ECTFE membranes increased with the increase in the mean pore size of the membranes, and the condensation flow and water recovery of membrane prepared at 20% TOTM were 1.71 kg·m(−2)·h(−1) and 54.84%, respectively, which were better than the performance of commercial hydrophobic PVDF membranes in the MC. These results indicated that there is good potential for the application of ECTFE membranes during the MC process. |
format | Online Article Text |
id | pubmed-9414311 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94143112022-08-27 ECTFE Membrane Fabrication Using Green Binary Diluents TEGDA/TOTM and Its Performance in Membrane Condenser Yu, Songhong Huang, Yu Zhang, Lixun Wang, Qian Wang, Zhaohui Cui, Zhaoliang Drioli, Enrico Membranes (Basel) Article Poly(ethylene-chlorotrifluoroethylene) (ECTFE) membrane is a hydrophobic membrane material that can be used to recover water from high-humidity gases in the membrane condenser (MC) process. In this study, ECTFE membranes were prepared by the thermally induced phase separation (TIPS) method using the green binary diluents triglyceride diacetate (TEGDA) and trioctyl trimellitate (TOTM). Thermodynamic phase diagrams of the ECTFE/TEGDA: TOTM system were made. The effects of the diluent composition and cooling rate on the structure and properties of the ECTFE membranes were investigated by characterizing the SEM, contact angle, mechanical properties, pore size and porosity. The results showed that ECTFE membranes with cellular structure were successfully prepared and exhibit good mechanical properties. Moreover, increasing the TOTM content in the binary diluents and decreasing the cooling rate could effectively improve the mean pore size of the ECTFE membranes, but the increase in TOTM content reduced the mechanical properties. During the MC process, the water recovery performance of ECTFE membranes increased with the increase in the mean pore size of the membranes, and the condensation flow and water recovery of membrane prepared at 20% TOTM were 1.71 kg·m(−2)·h(−1) and 54.84%, respectively, which were better than the performance of commercial hydrophobic PVDF membranes in the MC. These results indicated that there is good potential for the application of ECTFE membranes during the MC process. MDPI 2022-07-31 /pmc/articles/PMC9414311/ /pubmed/36005672 http://dx.doi.org/10.3390/membranes12080757 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Songhong Huang, Yu Zhang, Lixun Wang, Qian Wang, Zhaohui Cui, Zhaoliang Drioli, Enrico ECTFE Membrane Fabrication Using Green Binary Diluents TEGDA/TOTM and Its Performance in Membrane Condenser |
title | ECTFE Membrane Fabrication Using Green Binary Diluents TEGDA/TOTM and Its Performance in Membrane Condenser |
title_full | ECTFE Membrane Fabrication Using Green Binary Diluents TEGDA/TOTM and Its Performance in Membrane Condenser |
title_fullStr | ECTFE Membrane Fabrication Using Green Binary Diluents TEGDA/TOTM and Its Performance in Membrane Condenser |
title_full_unstemmed | ECTFE Membrane Fabrication Using Green Binary Diluents TEGDA/TOTM and Its Performance in Membrane Condenser |
title_short | ECTFE Membrane Fabrication Using Green Binary Diluents TEGDA/TOTM and Its Performance in Membrane Condenser |
title_sort | ectfe membrane fabrication using green binary diluents tegda/totm and its performance in membrane condenser |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414311/ https://www.ncbi.nlm.nih.gov/pubmed/36005672 http://dx.doi.org/10.3390/membranes12080757 |
work_keys_str_mv | AT yusonghong ectfemembranefabricationusinggreenbinarydiluentstegdatotmanditsperformanceinmembranecondenser AT huangyu ectfemembranefabricationusinggreenbinarydiluentstegdatotmanditsperformanceinmembranecondenser AT zhanglixun ectfemembranefabricationusinggreenbinarydiluentstegdatotmanditsperformanceinmembranecondenser AT wangqian ectfemembranefabricationusinggreenbinarydiluentstegdatotmanditsperformanceinmembranecondenser AT wangzhaohui ectfemembranefabricationusinggreenbinarydiluentstegdatotmanditsperformanceinmembranecondenser AT cuizhaoliang ectfemembranefabricationusinggreenbinarydiluentstegdatotmanditsperformanceinmembranecondenser AT driolienrico ectfemembranefabricationusinggreenbinarydiluentstegdatotmanditsperformanceinmembranecondenser |