Cargando…
The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry
We offer a report on the synthesis of low-molecular weight biobased poly(mannitol sebacate) (PMS) and its functionalization with acrylate groups (PMSAc). These synthesized polyesters were blended at a low level (10 wt%) with poly (lactic acid) PLA to prepare aligned fibers by electrospinning, couple...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414317/ https://www.ncbi.nlm.nih.gov/pubmed/36015598 http://dx.doi.org/10.3390/polym14163342 |
_version_ | 1784775958840999936 |
---|---|
author | Hevilla, Víctor Sonseca, Águeda Gimenez, Enrique Echeverría, Coro Muñoz-Bonilla, Alexandra Fernández-García, Marta |
author_facet | Hevilla, Víctor Sonseca, Águeda Gimenez, Enrique Echeverría, Coro Muñoz-Bonilla, Alexandra Fernández-García, Marta |
author_sort | Hevilla, Víctor |
collection | PubMed |
description | We offer a report on the synthesis of low-molecular weight biobased poly(mannitol sebacate) (PMS) and its functionalization with acrylate groups (PMSAc). These synthesized polyesters were blended at a low level (10 wt%) with poly (lactic acid) PLA to prepare aligned fibers by electrospinning, coupled with a rotatory collector. The obtained fibers were extensively studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXS), employing synchrotron radiation. The incorporation of the PMSs on the PLA fibers did not significantly affect the fiber diameters, whereas the alignment was almost maintained. The crystallinity and thermal properties were also slightly modified with the addition of PMSs, and an increase in the degree of crystallinity and in the glass transition temperature of the blend compared to PLA was observed. Remarkably, the PLA/PMSs fibers were more ductile due to the elastomeric character of PMS, with higher values of elongation at break and tensile strengths, and a smaller Young modulus in comparison with the PLA fibers. These modifications of the properties were more noticeable in the case of the acrylated PMS, which also provided readily available functional groups at the surface for further chemical reactions, such as the Michael addition or crosslinking processes. |
format | Online Article Text |
id | pubmed-9414317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94143172022-08-27 The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry Hevilla, Víctor Sonseca, Águeda Gimenez, Enrique Echeverría, Coro Muñoz-Bonilla, Alexandra Fernández-García, Marta Polymers (Basel) Article We offer a report on the synthesis of low-molecular weight biobased poly(mannitol sebacate) (PMS) and its functionalization with acrylate groups (PMSAc). These synthesized polyesters were blended at a low level (10 wt%) with poly (lactic acid) PLA to prepare aligned fibers by electrospinning, coupled with a rotatory collector. The obtained fibers were extensively studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide-angle X-ray diffraction (WAXS), employing synchrotron radiation. The incorporation of the PMSs on the PLA fibers did not significantly affect the fiber diameters, whereas the alignment was almost maintained. The crystallinity and thermal properties were also slightly modified with the addition of PMSs, and an increase in the degree of crystallinity and in the glass transition temperature of the blend compared to PLA was observed. Remarkably, the PLA/PMSs fibers were more ductile due to the elastomeric character of PMS, with higher values of elongation at break and tensile strengths, and a smaller Young modulus in comparison with the PLA fibers. These modifications of the properties were more noticeable in the case of the acrylated PMS, which also provided readily available functional groups at the surface for further chemical reactions, such as the Michael addition or crosslinking processes. MDPI 2022-08-16 /pmc/articles/PMC9414317/ /pubmed/36015598 http://dx.doi.org/10.3390/polym14163342 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hevilla, Víctor Sonseca, Águeda Gimenez, Enrique Echeverría, Coro Muñoz-Bonilla, Alexandra Fernández-García, Marta The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry |
title | The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry |
title_full | The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry |
title_fullStr | The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry |
title_full_unstemmed | The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry |
title_short | The Incorporation of Low-Molecular Weight Poly(Mannitol Sebacate)s on PLA Electrospun Fibers: Effects on the Mechanical Properties and Surface Chemistry |
title_sort | incorporation of low-molecular weight poly(mannitol sebacate)s on pla electrospun fibers: effects on the mechanical properties and surface chemistry |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414317/ https://www.ncbi.nlm.nih.gov/pubmed/36015598 http://dx.doi.org/10.3390/polym14163342 |
work_keys_str_mv | AT hevillavictor theincorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT sonsecaagueda theincorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT gimenezenrique theincorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT echeverriacoro theincorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT munozbonillaalexandra theincorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT fernandezgarciamarta theincorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT hevillavictor incorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT sonsecaagueda incorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT gimenezenrique incorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT echeverriacoro incorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT munozbonillaalexandra incorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry AT fernandezgarciamarta incorporationoflowmolecularweightpolymannitolsebacatesonplaelectrospunfiberseffectsonthemechanicalpropertiesandsurfacechemistry |