Cargando…
Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators
This paper discusses a novel approach to an EEG (electroencephalogram)-based driver distraction classification by using brain connectivity estimators as features. Ten healthy volunteers with more than one year of driving experience and an average age of 24.3 participated in a virtual reality environ...
Autores principales: | Perera, Dulan, Wang, Yu-Kai, Lin, Chin-Teng, Nguyen, Hung, Chai, Rifai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414352/ https://www.ncbi.nlm.nih.gov/pubmed/36015991 http://dx.doi.org/10.3390/s22166230 |
Ejemplares similares
-
Source-Space Brain Functional Connectivity Features in Electroencephalogram-Based Driver Fatigue Classification
por: Nguyen, Khanh Ha, et al.
Publicado: (2023) -
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks
por: Chai, Rifai, et al.
Publicado: (2017) -
Subtractive Fuzzy Classifier Based Driver Distraction Levels Classification
Using EEG
por: Wali, Mousa Kadhim, et al.
Publicado: (2013) -
Hybrid brain–computer interface for biomedical cyber-physical system application using wireless embedded EEG systems
por: Chai, Rifai, et al.
Publicado: (2017) -
Optimally-Weighted Image-Pose Approach (OWIPA) for Distracted Driver Detection and Classification
por: Koay, Hong Vin, et al.
Publicado: (2021)